
Higher category theory and the (additive) categorification of
cluster algebras

Lecture notes based on a mini-course at the IMJ-PRG, winter 2023/24

Merlin Christ

Last update: January 31, 2024.

Dates: 9-10.30am (Paris time) on December 7, 14, 21, January 25 and February 01.
Room: Sophie Germain, room 1013
Zoom link: https://u-paris.zoom.us/j/88147275936?pwd=TDdaeVNvQWpMemh3S0pUZ0FBaHV2dz09
(meeting ID: 881 4727 5936, Code: 075134)

Contents

Lectures 1,2: Introduction to stable infinity-categories
We introduce stable and presentable k-linear∞-categories, their relation with dg-categories,

the relation of infinity (co)limits with homotopy (co)limits, semiorthogonal decompositions and
lax limits
Lecture 3: Constructible sheaves on graphs

We discuss how to describe constructible sheaves on ribbon graphs in terms of functors out of
the exit-path category. Such ribbon graphs arise for instance as the spanning graphs of oriented
marked surfaces. We will be interested in such sheaves valued in stable infinity-categories.
Lectures 4,5: Applications to cluster algebra categorification

We discuss examples of constructible sheaves of stable infinity-categories, whose global sec-
tions describe infinity-categories relevant for the categorification of surface cluster algebras.
This includes 3-Calabi-Yau derived categories of (relative) Ginzburg algebras and 2-Calabi-Yau
Frobenius extriangulated/exact ∞-categories. The latter are related with the usual cluster
categories of the surfaces.

1



Contents
1 Introduction to stable ∞-categories 2

1.1 Stable ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Presentable ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 k-linear ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 From dg-categories to k-linear ∞-categories . . . . . . . . . . . . . . . . . . . . . 7
1.5 ∞-categorical (co)limits via homotopy (co)limits . . . . . . . . . . . . . . . . . . 8
1.6 Semiorthogonal decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Constructible sheaves of stable ∞-categories on graphs 12
2.1 Constructible sheaves via the exit path ∞-category . . . . . . . . . . . . . . . . . 12
2.2 Limits and colimits in ∞-categories of ∞-categories . . . . . . . . . . . . . . . . 13
2.3 More on limits in ∞-categories of ∞-categories . . . . . . . . . . . . . . . . . . . 16

3 Applications to categorifications of cluster algebras 18
3.1 Marked surfaces and graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Relative Ginzburg algebras of triangulated surfaces . . . . . . . . . . . . . . . . . 19
3.3 The 1-periodic topological Fukaya category . . . . . . . . . . . . . . . . . . . . . 20
3.4 Geometric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 The 2-Calabi–Yau exact ∞-structure . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Cluster algebras of marked surface . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 The categorification of the cluster algebra . . . . . . . . . . . . . . . . . . . . . . 26

1 Introduction to stable ∞-categories
We assume that the reader is familiar with the language of simplicial sets and with basic notions
from the theory of∞-categories, as developed in [Lur09]. For introductory treatments, we refer
to [Lur,Cis19].

1.1 Stable ∞-categories

Given an ∞-category C and two objects x, y ∈ C, we denote by MapC(x, y) ∈ S the mapping
space, where S denotes the ∞-category of spaces. An object x ∈ C is called a zero object if
MapC(x, y) and MapC(y, x) are contractible spaces for all y ∈ C. We write x = 0 if x is a zero
object. Note that the space of zero objects in an ∞-category is either empty or contractible.
An ∞-category with a zero object is called pointed.
Definition 1.1. Let C be a pointed ∞-category. We call C stable, if

• C admits all finite limits and colimits and

• a commutative square in C is pullback if and only if it is pushout.
There are many equivalent definitions of stable ∞-category, the most standard one might

be [Lur17, 1.1.1.9], which is equivalent to the above one by [Lur17, 1.1.3.4].
Notation 1.2. We denote a commutative square ∆1 × ∆1 → C which is both pullback and
pushout by a box □ in the center:

a b

c d

□

Such squares are called biCartesian squares.
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Definition 1.3. We call a commutative square in an ∞-category

a b

0 c

α

β

• a fiber sequence if it is pullback. In this case, we write fib(β) = a and call it the fiber of
β.

• a cofiber sequence if it is pushout. In this case, we write cof(α) = c and call it the cofiber
of α.

Note that if C is stable, fiber sequences coincide with cofiber sequences. Further, in this case
every morphism in C admits both a fiber and a cofiber, which are each unique up to equivalence.

An important result is that the homotopy 1-category of a stable∞-category inherits a canon-
ical triangulated structure, such that the fiber and cofiber sequences give rise to distinguished
triangles in this triangulated category, see [Lur17, 1.1.2.14]. The cofiber of a morphism is thus
mapped to the cone of the morphism in the triangulated homotopy category. We next describe
how to turn the passage to the fiber or cofiber into a functor.

Construction 1.4. Let C be a stable∞-category. Consider the functor∞-category Fun(∆1,C),
whose objects correspond to diagrams a→ b in C. We denote by

Funfib-cofib(∆1 ×∆1, C) ⊂ Fun(∆1 ×∆1,C)

the full subcategory consisting of fiber and cofiber sequences, whose objects we depicted as
follows.

a b

0 c

□

Pulling back along the inclusion ∆1 × {0} ⊂ ∆1 ×∆1 defines a functor

resa→b : Funfib-cofib(∆1 ×∆1, C)→ Fun(∆1,C) ,

given on objects by
a b

0 c

□ 7→ a→ b .

Similarly, pullback along {1} ×∆1 ⊂ ∆1 ×∆1 defines a functor

resb→c : Funfib-cofib(∆1 ×∆1, C)→ Fun(∆1,C) ,

given on objects by
a b

0 c

□ 7→ b→ c .

By [Lur09, 4.3.2.15], the functors resa→b and resb→c are trivial fibrations, and in particular
equivalences of∞-categories. The idea behind this is as follows: any biCartesian square is fully
determined by the morphism a → b (similarly by the morphism b → c), since the other part
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of the diagram is obtained by first taking a left Kan extension to add the morphism a → 0
to the diagram, and then taking a right Kan extension to complete the pushout square. The
result [Lur09, 4.3.2.15] is a very general statement about extending by Kan extensions giving
equivalences between ∞-categories of diagrams, and can be quite useful.

Continuing with the construction, we note that any trivial fibration has an inverse (which
is even unique up to contractible space of choices), and we define the cofiber functor

cof : Fun(∆1,C)→ C

as the composite of the inverse of resa→b with the restriction functor

resc : Funfib-cofib(∆1 ×∆1, C)→ C

a b

0 c

□ 7→ c

to c. The fiber functor is defined similarly.

We next describe the analog of the triangulated shift.

Definition 1.5. Assume that C has a zero object and admits all finite limits and colimits.
Let a ∈ C. Consider the (essentially unique) morphism a → 0. We define the suspension

(or sometimes called shift) of a as a[1] := cof(a→ 0). Similarly, we define the delooping of a as
a[−1] := fib(0→ a).

Exercise 1. Assume that C has a zero object and admits all finite limits and colimits. Then
suspension and delooping form functors [1], [−1] : C→ C. Furthermore, if C is stable, then these
functor are mutually inverse equivalences.

Exercise 2. There exists an equivalence of functors cof ≃ fib ◦[1].

Definition 1.6. A functor between stable ∞-categories is called exact, if it preserves fiber and
cofiber sequences.

Remark 1.7. Let F be a functor between stable ∞-categories. The following are equivalent:

• F is exact.

• F preserves finite limits.

• F preserves finite colimits.

Exact functors between stable∞-categories induce triangulated functors on the triangulated
homotopy categories.

Example 1.8. Let C be stable. Then Fun(∆1,C) is also stable. The functors [1] : C → C and
cof : Fun(∆1,C)→ C are exact.

Example 1.9. Let A be a ring. There exists a stable ∞-category D(A), called the unbounded
derived ∞-category of right A-modules, or for short the derived ∞-category of A. There are
different ways to construct this∞-category. It arises for instance as the underlying∞-category,
i.e. the∞-categorical localization Ch(A)[quism−1], of the model category of chain complexes of
right A-modules with the projective module structure. We will see another constructing passing
through dg-algebras further below.
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1.2 Presentable ∞-categories

Presentable stable∞-categories have excellent formal properties, for instance they admit a very
simple adjoint functor theorem. Before we state their formal definition, let us briefly illustrate
the concept of Ind-completion, see [Lur09, §5.3] for a detailed treatment.

Given a (small)∞-category C, one can form its Ind-completion Ind(C), which has a universal
property exhibiting it as obtained from C by freely adding (small) filtered colimits, see [Lur09,
5.3.5.10]. More generally, one can fix a regular cardinal κ and freely add colimits over (small)
κ-filtered ∞-categories, obtaining Indκ(C). Note that Indω(C) = Ind(C). Formally, Indκ(C) can
be defined as a full subcategory of the ∞-category of presheaves on C.

Definition 1.10. An ∞-category C is called presentable if it admits (small) colimits and is
accessible, meaning that there exists a regular cardinal κ and a small ∞-category D, such that
C ≃ Indκ(D).

In many examples of presentable∞-categories, one encounters the case that κ = ω in above
definition.

Example 1.11. Let A be a ring. Then the unbounded derived ∞-category D(A) is stable
and presentable. We have D(A) ≃ IndDperf(A), and the perfect derived ∞-category Dperf(A)
describes the full subcategory of D(A) of compact objects.

Remark 1.12. If C is stable, then Ind(C) is stable and presentable and C ⊂ Ind(C) is a stable
subcategory. Furthermore, if C is idempotent complete, then C ≃ Ind(C)c is equivalent to the
full subcategory of Ind(C) of compact object.

If F : A → B is an exact functor between stable ∞-categories, then Ind(F ) : Ind(A) →
Ind(B) is a colimits preserving functor between presentable and stable ∞-category. By passing
to Ind-completions, we can thus always restrict to Ind-complete stable∞-categories and colimit
preserving functors.

Presentable∞-categories have many desirable properties. For example, they admit all limits
and colimits. The most important one is the following ∞-categorical adjoint functor theorem.

Theorem 1.13 (∞-categorical adjoint functor theorem, [Lur09, 5.5.2.9]). A functor between
presentable ∞-categories admits

• a right adjoint if and only it preserves (small) colimits and

• a left adjoint if and only it preserves (small) limits and is accessible (meaning that it
preserves κ-filtered colimits for some regular cardinal κ).

Example 1.14. Let A,B be two rings and M any A-B-bimodule. There is an exact functor
-⊗M : Dperf(A)→ D(B). By the universal property of the Ind-completion, this functor extends
to a colimit preserving functor -⊗M : D(A)→ D(B), which thus admits a right adjoint, which
we can denote by RHomD(B)(M, -).

Definition 1.15. We denote by PrL ⊂ Cat∞ the subcategory consisting of presentable ∞-
categories and functors which admit a right adjoint. We denote by PrLSt ⊂ PrL the full subcat-
egory consisting of stable ∞-categories.

The ∞-category PrL admits a symmetric monoidal structure (in the sense of [Lur17]), with
monoidal product denoted ⊗, satisfying that colimit preserving functors A ⊗ B → C, with
A,B,C ∈ PrL, are in bijection with functors A × B → C preserving colimits in both entries.
If A,B ∈ PrLSt are stable, then A ⊗ B ∈ PrLSt is also stable. A similar monoidal structure on
abelian categories is known as the Deligne tensor product.
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1.3 k-linear ∞-categories

The theory of symmetric monoidal ∞-categories developed in [Lur17] gives a lift of the usual
theory of symmetric monoidal 1-categories that keeps all the usual features the theory. For
instance, given a symmetric monoidal ∞-category C, there is a notion of algebra object or
commutative algebra object in C.

Example 1.16. The derived ∞-category D(k) of a field k is symmetric monoidal, and algebra
objects in D(k) can be identified with k-linear dg-algebras.

Example 1.17. Commutative algebra objects in the symmetric monoidal∞-category PrLSt can
be identified with monoidal, stable presentable ∞-categories C, satisfying that the monoidal
product - ⊗ - : C × C → C preserves colimits in both entries. Thus, for example, D(k) ∈ PrLSt
gives a commutative algebra object.

Using the general machinery of∞-categorical modules, also developed in [Lur17], one we can
thus consider modules over D(k) in PrLSt; we refer to these as k-linear∞-categories (dropping the
words stable and presentable for brevity). We denote the ∞-category of k-linear ∞-categories
by

LinCatk := ModD(k)(PLSt) .

The module action equips a k-linear∞-category C with a tensor product map -⊗- : D(k)×C→ C

which preserves colimits in both entries. Morphisms in LinCatk are called k-linear functors.

Example 1.18. Let A be a k-linear algebra. Then D(A) is a k-linear ∞-category. Given
two k-linear algebras A,B, k-linear functors D(A) → D(B) can be identified with objects in
D(Aop ⊗k B).

Example 1.19. As an ∞-category of modules over a commutative algebra object, the ∞-
category LinCatk inherits a canonical symmetric monoidal structure from PrLSt. Given two
rings k-algebras A,B, we have D(A⊗k B) ≃ D(A)⊗LinCatk

D(B).

k-linear ∞-categories come with a k-linear Hom, referred to as the morphism object:

Definition 1.20 ([Lur17, 4.2.1.28]). Let C be a k-linear∞-category and X,Y ∈ C. A morphism
object MorC(X,Y ) ∈ D(k) is a k-module equipped with a morphism in C

α : MorC(X,Y )⊗X → Y,

such that for every object C ∈ D(k) composition with α induces an equivalence of spaces

MapD(k)(C,MorC(X,Y )) -⊗X−−−→ MapC(C ⊗X,MorC(X,Y )⊗X) −→ MapC(C ⊗X,Y ) .

Morphism objects in k-linear ∞-categories always exist and satisfy

Ext−i(X,Y ) := Hi MorC(X,Y ) ≃ π0 MapC(X[i], Y ) .

The formation of morphism objects forms a functor

MorC(-, -) : Cop × C −→ D(k)

which preserves limits in both entries. For X ∈ C, the functor MorC(X, -) is right adjoint to the
functor -⊗X : D(k)→ C.
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1.4 From dg-categories to k-linear ∞-categories

Let C be a k-linear dg-category. The dg-nerve Ndg(C) ∈ Cat∞ of C is an explicitly defined
∞-category, see [Lur17, Section 1.3.1], with

• objects the objects in C,

• morphisms the 0-cycles in C,

• 2-simplicies consisting of three 0-cycles f : a→ b, g : b→ c and h : a→ c, together with a
1-chain q in the chain complex C(a, c), satisfying dq = (g ◦ f)− h.

We denote by dgModC the dg-category of right dg C-modules, meaning dg-functors Cop →
Ch(k). Passing to the dg-nerve of dgModC corresponds to taking the∞-categorical localization
at (only) the chain homotopy equivalences. To obtain the derived ∞-category, we do the
following (compare also with Whitehead’s theorem for model categories).

Definition 1.21. The unbounded derived ∞-category D(C) of C is defined as the dg-nerve of
the full dg subcategory dgModcf

C ⊂ dgModC consisting of cofibrant dg C-modules (all objects
are fibrant) with respect to the projective model structure (defined e.g. in [Toë07]).

Remark 1.22. Let C be a dg-category. The weak equivalences W in the projective model
structure on dgModC are given by the quasi-isomorphisms. It’s not too hard to show that the
derived ∞-category D(C) has the universal property of the localization1 dgModC [W−1]. If C
is a (discrete) ring, this is proven in [Lur17, Section 1.3]. A generalization of the proof for C a
dg-algebra (dg-category with a single object), is described in [Chr22b, Section 2.4].

We will show below that D(C) is stable. It is further a presentable and k-linear∞-category.

Example 1.23. Let f : A→ B be a morphism between dg-algebras. This endows B with the
structure of a dg A-module. The tensor dg-functor

-⊗A B : dgModA −→ dgModB (1)

preserves cofibrant objects (since its the left adjoint in a Quillen adjunction) and thus restricts
to a functor

-⊗A B : dgModcf
A −→ dgModcf

B .

Passing to dg-nerves, we obtain a colimit preserving functor between stable, presentable ∞-
categories, denoted

f! : D(A)←→ D(B) . (2)

One can also write f! = - ⊗LA B = - ⊗A B. The functor f! admits a right adjoint f∗ =
RHomB(B, -), which is induced from the dg-functor HomB(B, -) : dgModB → dgModA.

The adjointness of f! and f∗ follows from the fact that - ⊗A B ⊣ HomB(B, -) is a Quillen
adjunction and the fact it thus induces an adjunction on the level of the underlying∞-categories,
see [MG16,Cis19].

The above story can be generalized to dg-categories and dg-bimodules. A dg A-B-bimodule
is a right dg Aop ⊗ B-module. Let M ∈ dgModAop⊗B be cofibrant. The dg-nerve of the dg-
functor - ⊗A M : dgModcf

A → dgModcf
B is a k-linear functor Ndg(- ⊗A M) : D(A) → D(B)

between k-linear ∞-categories.
1The ∞-category underlying a model category D with weak equivalences W is defined as the ∞-categorical

localization D[W −1].
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1.5 ∞-categorical (co)limits via homotopy (co)limits

We are interested in being able to compute two kinds of (∞-categorical) limits and colimits:

1) Limits and colimits in the derived ∞-category D(C) of a dg-category C.

2) Colimits in the ∞-category LinCatk of stable, presentable k-linear ∞-categories.

Under mild assumptions, homotopy (co)limits in a model category indexed by 1-categories
give rise to ∞-categorical (co)limits in its underlying ∞-category, see Remark 7.9.10 in [Cis19].
As we explain below, we can often compute both of these kinds of (co)limits in terms of ho-
motopy (co)limits. To explicitly compute homotopy (co)limits, one (co)fibrantly replaces the
diagram in question and simply computes the 1-categorical (co)limit of the replacement.

1) Limits and colimits in the derived ∞-category D(C).
Let C be a dg-category. Then dgModC is a model category with the projective model

structure. The cone of a morphism describes the homotopy pushout of the morphism along 0,
and similarly the cocone describes the homotopy pullback of the morphism along 0:

Lemma 1.24. Let C be a dg-category. Let α : a → b be a morphism between cofibrant ob-
jects in dgModC . Let cone(α) be the apparent dg C-module with underlying chain complex(
a[1]⊕ b, d =

(
−da 0
−α db

))
. There is a homotopy pushout diagram

a b

0 cone(α)

α

and a homotopy pullback diagram

cone(α)[−1] 0

a bα

.

These in turn thus give rise to a cofiber sequence and a fiber sequence in D(C).

Proof. The diagram
a b

0

α

is not cofibrant with respect to the projective model structure on the category of such diagrams
in dgModC . A cofibrant replacement is given by,

a (a⊕ a[1]⊕ b, d)

0

α

where (a⊕a[1]⊕b, d) denotes the mapping cylinder of α, with differential d given by

da ida 0
0 −da 0
0 −α db

.

This follows from [Lur09, A.2.4.4], stating that for pushouts, it suffices that the three objects
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are cofibrant and one of the two morphisms is a cofibration. The homotopy pushout is given
by the pushout of the above diagram, which in turn coincides with the cone of α.

Using Lemma 1.24, we can deduce that D(C) is stable:
Proposition 1.25. Let C be a dg-category. Then D(C) is a stable ∞-category.

Proof. Let α : a→ b be a morphism in dgModcf
C . Then there is an apparent quasi-isomorphism

a[1] −→ cone(b→ cone(α)) .

In particular, we find that the homotopy cofiber sequence

a b

0 cone(α)

α

is quasi-isomorphic to the homotopy fiber sequence

cone(b→ cone(α))[−1] b

0 cone(α)

and thus itself a homotopy fiber sequence. This shows that homotopy fiber sequences and
homotopy cofiber sequences in dgModC coincide. Hence, fiber sequences and cofiber sequences
in D(C) exist and also coincide.

Since dgModC has a homotopy 0-object, D(C) is furthermore pointed. It thus follows that
D(C) is stable (using the usual definition of stability of [Lur17, 1.1.1.9]).

Remark 1.26. Proposition 1.25 is a special case of the more general statement that the dg-
nerve of any pretriangulated dg-category is stable, see [Fao17, Thm. 4.3.1].

2) Colimits in LinCatk
Recall that:

• a quasi-equivalence of dg-categories is a dg-functor A→ B, which defines an equivalences
on the homotopy categories and quasi-isomorphisms on the morphism chain complexes.

• a Morita equivalence is a dg-functor A→ B giving rise to a quasi-equivalence dgModperf
A →

dgModperf
B .

There are two model structures on the category of dg-categories dgCatk, one with weak equiv-
alences the collection Q of quasi-equivalences and one with weak equivalences the collection M
of Morita equivalences. The latter model structure is a left Bousfield localization of the former,
so that the induced functor dgCatk[Q−1]→ dgCatk[M−1] preserves homotopy colimits.

The passage to the derived ∞-category defines an equivalence

D(-) : dgCatk[M−1] ≃ LinCatcpt-gen
k

between the ∞-category underlying dgCatk with the Morita model structure and the sub-
category LinCatcpt-gen

k ⊂ LinCatk of compactly generated2 ∞-categories and compact objects
preserving functors, see [Coh13]. Thus homotopy colimit diagrams indexed by 1-categories in
dgCatk give rise to ∞-categorical colimit diagrams in LinCatk.

We will compute some examples later on.
2Compactly geneated meaning ∞-categories C satisfying that C ≃ Ind(Cc).
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1.6 Semiorthogonal decompositions

There are two main constructions, which are referred to as ’gluing’ of stable ∞-categories. The
first is taking limits or colimits of certain diagrams of stable ∞-categories, for instance arising
from constructible sheaves, see the next section. Another way is to glue stable ∞-categories
along functors to produce semiorthogonal decompositions.

Definition 1.27. Let V be a stable ∞-categories. We call a full subcategory A ⊂ V a stable
subcategory if A is stable, the inclusion functor is exact and its image is closed under equiva-
lences.

Definition 1.28. Let V be a stable ∞-category and let A,B be stable subcategories of V. We
call the pair (A,B) a semiorthogonal decomposition (of length 2) of V if

1) for all a ∈ A and b ∈ B, the mapping space MapV(b, a) is contractible and

2) for every x ∈ V, there exists a fiber and cofiber sequence b → x → a in V with a ∈ A and
b ∈ B.

An easy way to define semiorthogonal decompositions of length n ≥ 3 is recursively in terms of
semiorthogonal decomposition of length 2.

Example 1.29. Let C be a stable ∞-category and V = Fun(∆1,C). Let A ≃ C be the full
subcategory of V spanned by diagrams of the form x→ 0 and B ≃ C the full subcategory of V
spanned by diagrams of the form 0→ y. Then (A,B) forms a semiorthogonal decomposition of
V.

Similarly, Fun(∆n−1,C) has a canonical semiorthogonal decomposition of length n.

Definition 1.30. Let V be a stable ∞-category and let i : A→ V be the inclusion of a stable
subcategory. We call A admissible if i admits both left and right adjoints.

Remark 1.31. Given a stable subcategory A ⊂ V, the right orthogonal A⊥ ⊂ V is the full
subcategory spanned by objects x ∈ V, such that the mapping space MapV(a, x) is contractible
for all a ∈ A. The left orthogonal ⊥A is defined similarly. One can show the following, see for
instance [DKSS21]:

• If (A,B) forms a semiorthogonal decomposition, then B = ⊥A and A = B⊥.

• (A,A⊥) forms a semiorthogonal decomposition if and only if A ⊂ V admits a left adjoint
and (A⊥,A) forms a semiorthogonal decomposition if and only if A ⊂ V admits a right
adjoint.

• Thus, A ⊂ V is admissible if and only if (A,⊥A) and (A⊥,A) form semiorthogonal de-
compositions of V.

Remark 1.32. Let (A,B) be a semiorthogonal decomposition of V. Let V→ B be right adjoint
adjoint of the inclusion B ⊂ V. Then the diagram

A V

0 B

(3)

forms a fiber and cofiber sequence in the ∞-category St of stable ∞-categories and exact func-
tors. In this case, B is also known as the Verdier quotient of V by A.

Conversely, consider any diagram of the form (3). If the diagram defines a fiber and cofiber
sequence in St and V→ B admits a fully faithful right adjoint, then (A,B) forms a semiorthog-
onal decomposition of V.
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To recover V from the components of the semiorthogonal decompositions, we can ask for
the extra data of a gluing functor.

Definition 1.33. Let (A,B) be a semiorthogonal decomposition of V with A admissible. Let
j : V→ A be the right adjoint of the inclusion A ⊂ V. The gluing functor F : B→ A of (A,B)
is defined as the composite functor B ⊂ V

j−→ A.

Note that we have by adjunction

MapA(a, F (b)) ≃ MapV(a, b) (4)

for all a ∈ A and b ∈ B.

Example 1.34. We describe the gluing functors in the semiorthogonal decomposition of Ex-
ample 1.29. The right adjoint of the inclusion

A = {x→ 0} ⊂ Fun(∆1,C)

is given on objects by the assignment

Fun(∆1,C)→ C ≃ A, (x α−→ y) 7→ fib(α) .

The restriction to B is thus given by the functor

F : B ≃ C ≃ A ,

where we use the identifications (0→ y) ∈ B 7→ fib(0→ y) ∈ C and x ∈ C 7→ (x→ 0) ∈ A.

If (A,B) has a gluing functor, then V is the lax limit of the gluing functor, considered as
a diagram ∆1 → St. This is an (∞, 2)-categorical universal property in an (∞, 2)-categorical
version St of the ∞-category of stable ∞-category St. This offers an exciting new perspective
on the rather classical concept of semiorthogonal decomposition. We won’t describe any details
here, but feel that it would have been a loss not to mention this perspective.

Recall that the limit of a diagram is the universal (commuting) cone over the diagram. A
lax cone over a diagram in an (∞, 2)-category is a generalization of a cone where the diagram
does not have to commute, instead there are non-invertible 2-morphisms. For instance a lax
cone over a diagram

∆1 → St, 0→ 1 7→ B
F−→ A

amounts to a diagram:
C

B A
F

Switching the direction of the non-invertible 2-morphisms changes from lax cones to oplax cones.
The lax limit is defined as the universal lax cone, and determined uniquely up to equivalence

of ∞-categories.
If (A,B) forms a semiorthogonal decomposition of V with gluing functor F , the lax limit

cone is of the form
V

B A

ψϕ

F

where an object x = cof(a → b) ∈ V with a ∈ A, b ∈ B is mapped to ϕ(x) = b and ψ(x) =
cof(a → F (b)), where the morphism a → F (b) arises from (4). The natural transformation
evaluates at x to the apparent cofiber morphism F (b)→ cof(a→ F (b)).
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Remark 1.35. Let F : B→ A be an exact functor. The lax limit of F in St can explicitly be
computed as the pullback of the following diagram in St:

Fun(∆1,A) (a0 → a1)

B A a1

ev1

F

2 Constructible sheaves of stable ∞-categories on graphs

2.1 Constructible sheaves via the exit path ∞-category

A stratified space consists, roughly, of a topological space X together with nested subspaces3

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X, subject to certain conditions which depend on the context of interest
(e.g. complex stratification, conical stratification, . . . ). We refer to the complements {Xi\Xi−1}
as the strata of the stratification.

Given a stratified space X, there is an associated simplicial set Exit(X), whose 0-simplicies
are the points of X and whose 1-simplicies are those paths in X which, if they do not remain
within one single stratum, only exit a stratum to a stratum of a higher index. Formally, Exit(A)
can be defined as a simplicial subset of the singular simplicial set Sing(X) of X, see [Lur17,
A.6.2], it is called the exit path∞-category of X. We note that Exit(X) is indeed an∞-category
if the stratification is conical [Lur17, A.6.4].

Let us consider the case where X = G is a graph, with one stratum the vertices and the
other stratum the complement of the vertices in G (i.e. the edges with vertices removed). In
this case, the definition exit path∞-category Exit(G) is equivalent to the following, very simple
definition.

Definition 2.1. Let G be a graph. We define the exit path ∞-category Exit(G) as the nerve
of the 1-category with

• objects the vertices and edges of G.

• a non-identity morphism v → e going from a vertex v to an edge e for every endpoint of
e at v.

If e is a loop at a vertex v, then there are two morphisms v → e. Note that if there are no
loops, the above 1-category is a poset.

Example 2.2. On the left: an example of a graph with two vertices and five edges. Three of
the edges are external edges, meaning they are incident to a single vertex. One of the edges is
a loop. On the right: its exit path category.

v1

v2
e1

e2

e3

e4

e5

Exit(Γ) =

e2 v2

e3 v1 e1 e5

e4

We next discuss how to describe constructible sheaves on X using Exit(X).
3More generally, the subspaces can also be indexed by a poset.
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Definition 2.3. A sheaf F (with values in some∞-category C) on a stratified space X is called
constructible if F |Xi\Xi−1 is a locally constant sheaf for all i.

Theorem 2.4 ( [Lur17] for C = S, [Tan19], [PT22]). Let X be a sufficiently nice conically
stratified space and C a compactly generated presentable ∞-category. Then there exists an
equivalence of ∞-categories

Shvc(X,C) ≃ Fun(Exit(X),C)

between the ∞-category of C-valued constructible sheaves on X and the ∞-category functors
from the exit path ∞-category of X to C.

In terms of functors out of the exit path ∞-category, the global sections of a constructible
sheaf are obtained as follows:

Definition 2.5. Let F : Exit(X) → C be a constructible sheaf on X. The global sections
H(X,F) ∈ C of F are defined as the limit of F.

2.2 Limits and colimits in ∞-categories of ∞-categories

Let us consider the following flavors of ∞-categories of ∞-categories:

• Cat∞, the ∞-category of ∞-categories.

• St, the subcategory of Cat∞ of stable ∞-categories and exact functors.

• PrL, the subcategory of Cat∞ of presentable ∞-categories and colimit preserving (=left
adjoint) functors.

• PrR, the subcategory of Cat∞ of presentable ∞-categories and limit preserving and ac-
cessible (=right adjoint) functors.

• PrLSt ⊂ PrL and PrRSt ⊂ PrR, the full subcategories consisting of stable and presentable
∞-categories.

• LinCatk = ModD(k)(PLSt) the ∞-category of k-linear ∞-categories.

The forgetful functors can be organized in a commutative diagram as follows.

LinCatk PrLSt PrL Cat∞ PrR PrRSt

St

(5)

All of the above functor preserve limits. The functors LinCatk → PrLSt → PrL furthermore also
preserve colimits.

Exercise 3. Find references in [Lur09,Lur17] that the above functors preserve limits.
Hint/comment: I am not aware of a direct reference for the statement that the functor

St→ Cat∞ preserves limits, so don’t worry about this one. One can deduce this statement from
the explicit description of limits in Cat∞ in terms of sections of the Grothendieck construction,
see also below.

To compute limits in terms of colimits and vice versa in PrL and PrR, we can use the
following result:

13



Theorem 2.6 ([Lur09, 5.5.3.4]). There are inverse equivalences of ∞-categories

radj : PrL ←→
(
PrR

)op
: ladj ,

where radj is the identity on objects and maps a functor to its right adjoint. Similarly, ladj
maps a functor to its left adjoint.

Corollary 2.7. The colimit of a diagram Z → PrL is equivalent to the limit of the right adjoint
diagram Zop → PrR.

The equivalence from Theorem 2.6 clearly restricts to an equivalence between PrLSt and
(PrRSt)op. It follows that Corollary 2.7 also holds for limits and colimits in PrLSt and PrRSt.

We already know how to compute colimits in LinCatk via homotopy colimits of dg-categories.
The remainder of this subsections puts the theory into action in a first example:

Example 2.8. Consider the following graph G, which we conveniently embed into an annulus
decorated with two orange points (marked points) on the boundary.

We define a constructible sheaf F on G via the following diagram in LinCatk:

D(k)

D(k) D(kA2) D(k) D(kA2)

D(k)

ϱ1

ϱ2

ϱ3[−1]

ϱ1

ϱ3[−1]

ϱ1
(6)

Here D(kA2) is the derived ∞-category of the k-linear path algebra of the A2-quiver · � ·.

Exercise 4. Show that D(kA2) ≃ Fun(∆1,D(k)).
Hint: a natural transformation of functors D(kA2)→ D(k) is by definition a functor
∆1 ×D(kA2)→ D(k).

Further,

• the functor ϱ1 is defined as the right adjoint of the tensor functor

(-)⊗k (0→ k) : D(k)→ D(kA2) .

Explicitly, we have that ϱ1(a → b) ≃ b for a → b ∈ Fun(∆1,D(k)) ≃ D(kA2) with
a, b ∈ D(k).

14



• the functor ϱ2 is defined as the right adjoint of the tensor functor

(-)⊗k (k[−1]→ 0) : D(k)→ D(kA2) .

Explicitly, we have that ϱ2(a α−→ b) ≃ cof(α).

• the functor ϱ3[−1] is defined as the right adjoint of the tensor functor

(-)⊗k (k id−→ k) : D(k)→ D(kA2) .

Explicitly, we have that ϱ3[−1](a→ b) ≃ a.

By cofinality [Lur09, §4.1], the ∞-category of global sections of F, i.e. the limit of (6), is
equivalent to the limit of the following sub-diagram:

D(k)

D(kA2) D(kA2)

D(k)

ϱ1

ϱ3[−1]

ϱ1

ϱ3[−1]

This limit is in turn equivalent to the limit (pullback) in LinCatk of the following diagram (this
follows for instance from [Lur09, 4.2.3.10]).

D(kA2) D(kA2)

D(k)×D(k)
(ϱ3[−1],ϱ1) (ϱ3[−1],ϱ1)

We can compute the above pullback as the pushout of the left adjoint diagram in PrLSt, or
equivalently in LinCatk, since the functor LinCatk → PLSt preserves colimits. This left adjoint
diagram is equivalent to the image under the functor D(-) : dgCatk → LinCatk of the following
diagram of dg-categories.

k ⨿ k

kA′
2 kA′

2

ϕϕ (7)

Here k ⨿ k refers to the dg-category with two objects 1, 2, and having as morphisms, up to
k-linear multiple, only identities or zero maps. The dg-category kA′

2 is Morita equivalent to the
A2-quiver, it is given by the dg-category with two objects 1, 2 and

HomkA′
2
(i, j) =

{
k i = j or i = 1, j = 2
0 i = 2, j = 1

∈ Ch(k) .

Under the Morita equivalence dgModperf(kA′
2) ≃ dgModperf(kA2), the two objects 1, 2 ∈ kA′

2
are identified with the two projectove kA2-modules P1 = (k id−→ k) and P2 = (0 → k). The
morphism of dg-categories ϕ is the apparent cofibration mapping 1 to 1 and 2 to 2. Passing to
the derived ∞-category, the inclusion ϕ of the objects 1, 2 gives to the tensor functor with the
projective module P1, P2, this is the right adjoint of (ϱ1, ϱ2).
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Since the diagram (7) is cofibrant, its homotopy colimit coincides with the 1-categorical
colimit, which is given by the dg-version of the Kronecker quiver Q = 1 2 . We thus
find that

H(Γ,F) ≃ D(Q) .
The ∞-category H(Γ,F) is also called the topological Fukaya category of the annulus. More
generally, the topological Fukaya category of any framed marked surface [DK15, DK18] arises
as the global sections of constructible sheaf on trivalent graph embedded in the surfaces, that
assign D(kA2) to each vertex and D(k) to each edge.

If k = C, the ∞-category H(Γ,F) is furthermore equivalent to the derived ∞-category of
quasi-coherent sheaves D(P1) on P1.

2.3 More on limits in ∞-categories of ∞-categories

In this subsection, we describe the computation of limits in Cat∞ in terms of coCartesian
sections of the Grothendieck construction. Since the forgetful functors in (5) all preserve limits,
this tells one how to compute limits in a number of ∞-categories of ∞-categories.

This description in terms of sections of the Grothendieck construction formalizes a very
simple insight: an object in the limit of a diagram, i.e. a functor from the point ∗ = ∆0 to the
limit, is by the universal property of the limit the same thing as a compatible family of objects
in the values of the diagram. Stated differently, a global section of the constructible sheaf is
given by a compatible family of local sections4. If we express a complicated stable ∞-category
C as the limit of a diagram of simpler stable ∞-categories, we can thus (sometimes greatly)
simplify the construction and study of the objects of C.

Let Z be a 1-category and f : Z → Set∆ a functor valued in ∞-categories. The functor f
defines a functor F : N(Z)→ Cat∞, which we can think of as a strictly commuting diagram of
∞-categories.

Definition 2.9 ([Lur09, 3.2.5.2]). We define the Grothendieck construction p : Γ(f) → N(Z)
(referred to as the relative nerve in [Lur09]) as as the following coCartesian fibration between
∞-categories. Firstly, simplicial set Γ(f) is defined, such that an n-simplex ∆n → Γ(f) amounts
to:

• A functor σ : ∆n → N(Z).

• For every simplicial subset ∆I , I = {i1, . . . , im} ⊂ [n], a functor ∆I → f(σ(im)).

• For every pair of I = {i1, . . . , im} ⊂ J = {j1, . . . , jm′} ⊂ [n] the arising diagram

∆I f(σ(im))

∆J f(σ(jm′))

f◦σ(im→jm′ )

is required to commute.

The functor p : Γ(f)→ N(Z) is defined by mapping an n-simplex as above to the n-simplex σ
in N(Z).

An object in Γ(f) thus consists of a choice of z ∈ N(Z) and an object Xz ∈ f(z), we denote
the object by (z,Xz). A morphism (z,Xz)→ (z′, Xz′) in Γ(f) consists of a morphism α : z → z′

together with a morphism f(α)(Xz)→ Xz′ in f(z′).
4This universal property is one of the main motivations for us to formulate everything using sheaves and limits

of ∞-categories, instead of using cosheaves and colimits of ∞-categories.
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Definition 2.10.

(1) A section of the Grothendieck construction p : Γ(f)→ N(Z) consists of a functorX : N(Z)→
Γ(f) whose composite with p is the identity on N(Z). We denote by

FunN(Z)(N(Z),Γ(f)) := Fun(N(Z),Γ(f))×Fun(N(Z),N(Z)) {idN(Z)}

the ∞-category of sections of p.

(2) A section X of p is called coCartesian5 if for each morphism α : i → j in N(Z), the
morphism X(α) : (i,X(i))→ (j,X(j)) in Γ(f), with i, j ∈ Z and X(i) ∈ f(i), X(j) ∈ f(j),
encodes an equivalence f(α)(X(i)) ≃ X(j). We denote by

FuncoCart
N(Z) (N(Z),Γ(f)) ⊂ FunN(Z)(N(Z),Γ(f))

the full subcategory of coCartesian sections.

Theorem 2.11. The limit of F : N(Z)→ Cat∞ is equivalent to FuncoCart
N(Z) (N(Z),Γ(f)).

Proof. This appears as Corollary 7.4.1.10 in Lurie’s Kerodon [Lur]. A similar statement also
appears in [Lur09, 3.3.3.2] (warning: there are some typos in that statement).

Remark 2.12. One can perform actual down to earth computations using this description
in terms of coCartesian sections of the Grothendieck construction. Further, there is the neat
feature that one can decompose some computations into a collection of much simpler computa-
tions in the larger ∞-category of all sections of the Grothendieck construction. This allows for
local-to-global arguments for, for instance, the computation of Homs between global sections.
This circle of ideas was applied for instance in [Chr21,CHQ23].

Example 2.13. Consider the constructible sheaf from Example 2.8. The two modules over the
Kronecker quiver

S1 = k 0 , S2 = 0 k

can be identified with the following coCartesian sections of the Grothendieck construction:

S1 ≃

0

k[1] (k → 0) k[1] (k → 0)

k

S2 ≃

k

k (0→ k) k (0→ k)

0
5One can check that such an X(α) defines a p-coCartesian edge in the sense of [Lur09, page 118 or the dual

of Def. 2.4.1.1].
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3 Applications to categorifications of cluster algebras

It can be viewed as a manifestation of a general principle:
All interesting categories are equivalent to Fukaya categories.

A.B. Goncharov, Ideal webs, moduli spaces of local systems,
and 3d Calabi-Yau categories [Gon17]

3.1 Marked surfaces and graphs

Definition 3.1. By a surface S, we mean an oriented, compact, connected 2-dimensional topo-
logical manifold with nonempty boundary ∂S. All connected boundary components of S are
circles.

A marked surface (S,M), usually simply denoted by S, consists of a surface with a finite
nonempty subset M ⊂ ∂S of marked points on the boundary, satisfying that each boundary
component contains a marked point.

Example 3.2. Two simple examples of marked surfaces: the 4-gon (disc with 4 boundary
marked points) and the annulus with two marked points.

A triangulation of a marked surface S consists of a decomposition of S into triangles with
corners at the marked points. The dual graph of a triangulation is obtained by placing a vertex
into each triangle of the triangulation and connecting these vertices according to the incidence
of the triangulation. Each boundary edge of the triangulation gives rise to an external edge of
the graph. Note that this dual graph is trivalent.

Example 3.3. A triangulation of the 4-gon and its dual trivalent graph G.

G

Remark 3.4. The (clockwise) orientation of S equips the dual graph with the structure of a
ribbon graph, meaning a graph with a cyclic orientation of the halfedges incident to any given
vertex.
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3.2 Relative Ginzburg algebras of triangulated surfaces

Let S be a marked surface with a triangulation and dual trivalent ribbon graph G. In the
following, we define a constructible cosheaf Fdg : Exit(G)op → dgCatk of dg-categories on G.

Construction 3.5. Let v be a vertex of G with set Ev of incident edges. The set Ev has three
objects and carries the clockwise cyclic order, we write x+1 for the successor. We define Fdg(v)
to be the dg-category

• with set of objects Ev

• morphisms freely generated by morphisms ax : x → x + 1 in degree 0, morphisms bx+2 :
x→ x+ 2 in degree 1, as well as morphisms lx, Lx : x→ x with deg(lx) = 1, deg(Lx) = 2,
where x ∈ Ev is any object, and

• the differential determined on the free generators by

d(ax) = 0

d(bx+2) = ax+1ax

d(lx) = 0

d(Lx) = lx − ax−1bx−1 + bxax

Labeling the edge incident to v by 1, 2, 3 (compatibly with their cyclic order), we can depict
the objects and free generating morphisms of Fdg(v) as follows:

2

1 3

a2

b1

l2

L2

a1

b3l1L1

a3

b2

l3 L3

Note that Fdg(v) is quasi-isomorphic to the dg-category obtained by the same recipe but re-
moving the six cycles li, Li; the cycles are needed for the cofibrancy of the dg-functor below.

For e an edge of G, we let Fdg(e) be the dg-category with a single object e and morphisms
freely generated by the endomorphism le : e→ e lying in degree 1 with d(le) = 0.

For v a vertex of G and e an incident edge, we define the dg-functor Fdg(e→ v) : Fdg(e)→
Fdg(v), by mapping the object e to e and the endomorphism le to le.

Exercise 5. Show that the dg-functor∏
e∈Ev

Fdg(e→ v) :
∏
e∈Ev

F(e)→ F(v)

is a cofibration in the quasi-equivalence model structure.

Lemma 3.6 ([CHQ23, Lemma 6.21]). The diagram Fdg is cofibrant (with respect to the projec-
tive model structure on Fun(Exit(G)op,dgCatk) induced by the quasi-equivalence model struc-
ture on dgCatk). In particular, the homotopy colimit of Fdg coincides with the (1-categorical)
colimit.
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Definition 3.7. The relative Ginzburg dg-category G of the triangulated marked surface S is
defined as the colimit of Fdg in dgCatk.

We remark that the dg-category G is Morita equivalent to a dg-algebra referred to as the
relative Ginzburg algebra associated with the triangulation, see for instance [Chr22b] for a
definition.

Let F : Exit(G)→ LinCatk be the constructible sheaf given by the right adjoint diagram of
D(-) ◦ Fdg.

Theorem 3.8 ([Chr22b]). There exists an equivalence between k-linear ∞-categories

H(G,F) ≃ D(G ) .

Proof. Combine Lemma 3.6 with the results for how to compute limits and colimits of stable
∞-categories, see Sections 1.5 and 2.2.

The relative Ginzburg algebras described above are part of the more general class of relative
Ginzburg algebras associated with ice quivers with potential, see [Wu23]. If the ice quiver has
no frozen vertices, one speaks of a (non-relative) Ginzburg algebra. Such Ginzburg algebras
and their relative versions are interesting for many reasons. Here are a few:

• They can be used for the construction of cluster categories, which categorify cluster alge-
bras, as we will discuss further below.

• The derived category of finite dimensional modules over the non-relative Ginzburg algebra
associated with a triangulated surface embeds fully faithfully into the derived Fukaya
category of a Calabi–Yau threefold Y with a fibration π : Y → S to the surface [Smi15]. It
seems likely that the perfect derived category of G describes a partially wrapped Fukaya
category of this threefold Y .

• Ginzburg algebras are under mild assumptions left 3-Calabi–Yau [Kel11] and relative
Ginzburg algebras are under mild assumptions relative left 3-Calabi–Yau in the sense
of Brav-Dyckerhoff [BD19], see [Wu23, Yeu16]. Further, under mild assumptions any
(relative) left 3-Calabi–Yau dg-algebra is quasi-isomorphic to a (relative) Ginzburg algebra
[dB15,KL23].

• The spaces of Bridgeland stability conditions of (relative) Ginzburg algebras coming from
surfaces can be described in terms of spaces of quadratic differentials [BS15,KQ20,CHQ23].

3.3 The 1-periodic topological Fukaya category

We begin with what should initially be a surprising fact. Consider the derived ∞-category
F(v) = D(Fdg(v)) of the dg-algebra associated with a vertex in the last section.

Lemma 3.9 ([Chr22b]). The ∞-category F(v) is equivalent to the lax limit of the diagram in
(the (∞, 2)-categorical version of) LinCatk

D(k) -⊗k−−→ D(k[t1]) id−→ D(k[t1])

with k[t1] the graded algebra of polynomials (considered as a dg-algebra) with generator in degree
|t1| = 1 and the first functor arises from the apparent k-k[t1]-bimodule with underlying complex
k. In particular, F(v) admits a semiorthogonal decomposition

(D(k),D(k[t1]),D(k[t1])) .
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Proof sketch. The (derived) endomorphism algebra of any object x ∈ Fdg(v) in F(v) is equiva-
lent to k[t1]. Thus, the presentable subcategory of F(v) generated by x is equivalent to D(k[t1])
by [Lur17, 7.1.2.1]. Further, one can check that MorF(v)(x, x+1) ≃ k[t1] and MorF(v)(x+1, x) ≃
0. This gives rise to the two copies of D(k[t1]) in the semiorthogonal decomposition. Since the
composite morphism x

ax−→ x + 1 ax+1−−−→ x + 2 vanishes (more precisely, we have a specific null
homotopy in the dg-nerve arising from the identity d(bx+2) = ax+1ax), we get a morphism
fib(x ax−→ x+ 1)→ x+ 2[1], whose fiber y satisfies MorF(v)(y, y) ≃ k, and thus generates the full
subcategory D(k) inside of F(v). One computes that

MorF(v)(y, x+ i) ≃
{
k i = 0
0 i = 1

and

MorF(v)(x+ i, y) ≃
{

0 i = 0
0 i = 1

From this, one deduces the desired semiorthogonal decomposition, as well as determines the
gluing functors, leading to the description as the lax limit.

Let k[t±1 ] be the graded algebra of Laurent polynomials with generator in degree |t1| = 1. Its
derived ∞-category D(k[t±1 ]) describes the derived ∞-category of 1-periodic chain complexes,
meaning chain complexes C• together with an identification t1 : C• ≃ C•+1. We remark that
D(k[t±1 ]) is not 1-periodic in the sense that [1] = idD(k[t±1 ]) (though this holds on objects) if
char(k) ̸= 2. However D(k[t±1 ]) is 2-periodic and can be considered as a k[t±2 ]-linear∞-category.

Pulling back along the morphism of dg-algebras k[t1] t1 7→t1−−−−→ k[t±1 ] yields a functor D(k[t±1 ])→
D(k[t1]).

Exercise 6. Show that the functor D(k[t±1 ])→ D(k[t1]) is fully faithful.
Hint: show that MorD(k[t1])(k[t±1 ], k[t±1 ]) ≃ MorD(k[t±1 ])(k[t±1 ], k[t±1 ]) ≃ k[t±1 ].

Remark 3.10. The subcategory D(k[t±1 ]) ⊂ D(k[t1]) describes the kernel of the right adjoint
MorD(k[t1])(k, -) : D(k[t1])→ D(k) of -⊗ k.

Lemma 3.11 ([Chr22a]). There is a constructible subsheaf Fclst ⊂ F with

• for any edge e of G
Fclst(e) = D(k[t±1 ]) ⊂ D(k[t1]) = F(e)

• and for v any vertex of G, the ∞-category Fclst(v) given by the presentable subcategory
generated from the two subcategories D(k[t±1 ]) ⊂ D(k[t1]) in F(v). Thus

Fclst(v) ≃ Fun(∆1,D(k[t±1 ])) .

The three arising functors

Fclst(v) ≃ Fun(∆1, k[t±1 ])→ D(k[t±1 ]) = Fclst(e)

are given by the two evaluation functors at 0, 1 and the cofiber functor (at least on objects).

Definition 3.12. The ∞-category of global sections H(G,Fclst) is called the 1-periodic topo-
logical Fukaya category of S. We will write CS := H(G,Fclst).
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Remark 3.13. The morphism of sheaves Fclst → F induces a fully faithful functor

CS = H(G,Fclst)→ H(G,F) ≃ D(G ) .

In fact, this functor has a left adjoint that exhibits CS as the Verdier quotient D(G )/ IndDfin(G ),
where Dfin(G ) denotes the derived ∞-category of modules with finite dimensional homology.

Remark 3.14. The ∞-category CS does not depend on the choice of triangulation (and thus
dual graph G) of S, nor any other choices made above in its construction, up to equivalence
of ∞-categories. We won’t be able to prove this here, but a very clean proof, constructing this
sheaf from a cyclic 2-Segal object, is given in [DK18].

3.4 Geometric models

The universal property as a limit of the ∞-category of global sections of a constructible sheaf
implies that a global sections amounts to a compatible family of local sections. In this section,
we briefly sketch how this can be used to associate global sections to suitable curves in S.

To begin with, let us look at some local sections of the perverse sheaf F: given a vertex v
of the trivalent graph G, there are three objects in Fdg(v), corresponding to the three edges
of G incident to v, which give rise to three objects in F(v). For e such an edge, the functor
F(v)→ F(e) is given by MorF(v)(e, -), and as we noted in Section 3.3, we have

MorF(v)(e, e) ≃ MorF(v)(e+ 2, e) ≃ k[t1] ∈ D(k[t1]) = F(e) = F(e+ 2)

and
MorF(v)(e+ 1, e) ≃ 0 ∈ D(k[t1]) = F(e+ 1) .

We can think of the local section e ∈ F(v) as a curve δ in the 3-gon, with G in black:

δ

e+ 2

ee+ 1

The endpoints of the curve δ correspond to the edges where the local section e ∈ F(v) evaluates
non-trivially. We call the curve δ a segment. Given any curve γ : [0, 1]→ S which does not hit
the vertices of G, we can intersect γ with the triangulation to produce local segments of the
curve. The local segments of the curve give rise to a compatible family of local sections, which
glue to a global section, which we denote by Xγ ∈ D(G ).

Many interesting objects in D(G ) can be obtained from such gluing constructions, and these
can be used to efficiently study their properties; this was explored in [Chr21]. Let us indicate
a few examples of such results:

• Let x ∈ G be an object. There exists a curve γ as above and an equivalence x ≃ Xγ .

• Let γ : [0, 1]→ S be an embedded curve disjoint to the vertices of G. Then

MorD(G )(Xγ , Xγ) ≃ k[t1] .
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• More generally, given two suitable curves γ, γ′, then MorD(G )(Xγ , Xγ′) is the direct sum
of copies of shifts of k[t1], the number of which counts crossing of γ and γ′ as well as
so-called directed boundary intersections.

As shown in see [Chr22a], all indecomposable, compact objects in the subcategory H(G,Fclst)→
H(G,F) ≃ D(G ) can be associated with curves. We collect the results:

Definition 3.15. An allowed curve is a continuous map γ : U → S\M with U = [0, 1], S1,
satisfying that

• all existent endpoints of γ (possibly none) lie in ∂S\M .

• away from the endpoints, γ is disjoint from ∂S.

• γ does not cut out an unmarked disc in S.

An open matching curve γ in S is an equivalence class of allowed curves under homotopies
relative ∂S\M with domain U = [0, 1] and considered up to reversal of orientation.

A closed matching curve is a suitable allowed curve with domain S1 equipped with a local
system of vector spaces, see [Chr22a].

Given a matching curve γ, we denote by Mγ ∈ CS the associated indecomposable object.

Theorem 3.16 (The geometrization Theorem). Let X ∈ CS be a compact object. Then there
exists a unique and finite set J of matching curves in S and an equivalence in CS

X ≃
⊕
γ∈J

Mγ .

Let γ, γ′ be two matching curves. We denote by icr(γ, γ′) the number of crossings, meaning
intersections in the interior (not counting redundant crossing which can be removed by changing
the homotopy classes of the curves). We denote by ibdry(γ, γ′) the number of directed boundary
intersections, meaning intersection with the same boundary component, such that γ′ follows γ
in the clockwise direction. This can be depicted as follows:

γ

γ′
γ

γ′

Figure 1: On the left: a crossing of two matching curves γ, γ′. On the right: a directed boundary
intersection of two matching curves γ, γ′.

Theorem 3.17. Let γ be an open matching curve. Then exists an equivalence

MorCS(Mγ ,Mγ) ≃ k[t±1 ]⊕1+2icr(γ,γ′) .

Let γ, γ′ be two distinct open matching curves. There exists an equivalence

MorCS(Mγ ,Mγ′) ≃ k[t±1 ]⊕icr(γ,γ′)⊕ibdry(γ,γ′) .
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3.5 The 2-Calabi–Yau exact ∞-structure

As we have seen in the last section, there are two types of morphisms between objects in CS.
Firstly, there are those coming from crossing intersections of matching curves, these morphisms
are symmetric in the sense that the morphisms go in both directions. Secondly, there are those
coming from directed boundary intersections, because of their directed nature the corresponding
morphisms just go from one object to the other. We would like to think of the first class of
morphisms as being Calabi–Yau, which we can formalize as follows:

Let e be an edge of G. The limit cone of the diagram Fclst contains a functor CS =
H(G,Fclst)→ F(e), which we denote by eve, we think of it as evaluating a global section at the
edge e. Let G∂ be the set of external edge of G and consider the product functor:

G :=
∏
e∈G∂

eve :
∏
e∈G∂

H(G,Fclst) −→
∏
e∈G∂

Fclst(e)

Definition 3.18. Let X,Y ∈ Cc
S. We denote by Ext1,CY

Cc
S

(X,Y ) ⊂ Ext1
Cc

S
(X,Y ) the kernel of

the morphism
G : Ext1

Cc
S
(X,Y ) −→ Ext1(G(X), G(Y )) .

We call the k-vector space Ext1,CY
Cc

S
(X,Y ) the vector space of Calabi–Yau extensions; it forms a

subfunctor of Ext1.

An extension Mγ → Mγ′ [1] corresponding to an intersection of γ and γ′ is Calabi–Yau if
and only if the intersection is a crossing and not a directed boundary intersection.

Proposition 3.19 ([Chr22a]). There exists an equivalence of vector spaces

Ext1,CY
CS

(X,Y ) ≃ Ext1,CY
CS

(Y,X)∗

bifunctorial in X,Y ∈ Cc
S.

We can organize the Calabi–Yau extensions into an exact ∞-structure on CS in the sense
of Barwick [Bar15]. Such an exact ∞-structure amounts to a collection of inflations X ↪→ Y
and deflations Y ↠ Z in CS, satisfying ∞-categorical generalizations of the usual axioms of an
exact 1-category. A fiber and cofiber sequence of the form X ↪→ Y ↠ Z is referred to as an
exact sequence.

Lemma 3.20. There exists the structure of an exact ∞-category on CS, such that a fiber and
cofiber sequence X → Y → Z in CS is exact if and only if its image under G is a split fiber and
cofiber sequence. The vector space of equivalence classes of exact extensions X → Y → Z is in
bijection with Ext1,CY

CS
(Z,X).

This exact ∞-structure induces an extriangulated structure on the homotopy 1-category of
CS in the sense of Nakaoka-Palu, see [NP20].

3.6 Cluster algebras of marked surface

We briefly recall the definition of cluster algebra, following the conventions of [FWZ16, Chapter
3]. Let m1,m2 ≥ 0. Consider the field F = Q(y1, . . . , ym1+m2) of rational functions in m1 +m2
variables.

Definition 3.21. A (labeled) seed
(
x, M̃

)
in F consists of

• an m1 +m2-tuple x = (x1, . . . , xm1+m2) in F forming a free generating set of F and
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• an (m1 +m2)×m1-matrix M̃ , such that the upper m1 ×m1-matrix is skew-symmetric.

The tuple x is called a cluster and the elements x1, . . . , xm1+m2 are called cluster variables. The
elements xm1+1, . . . , xm1+m2 are also called the frozen cluster variables. The matrix M̃ is called
the extended mutation matrix.

Given such a seed
(
x, M̃

)
and a choice of 1 ≤ l ≤ m1, we can produce a new seed

(
x′, µl(M̃)

)
with

• µl(M̃)i,j =


−M̃i,j if i = l or j = l

M̃i,j + M̃i,lM̃l,j if M̃i,l > 0 and M̃l,j > 0
M̃i,j − M̃i,lM̃l,j if M̃i,l < 0 and M̃l,j < 0
M̃i,j else.

• x′ = (x1, . . . , xl−1, x
′
l, xl+1, . . . , xm1+m2), where x′

l is determined by the cluster exchange
relation

x′
lxl =

∏
j with M̃j,l>0

x
M̃j,l

j +
∏

j with M̃j,l<0

x
−M̃j,l

j .

The seed
(
x′, µl(M̃)

)
is called the seed mutation of

(
x, M̃

)
at the cluster variable xl.

Definition 3.22. Let (x, M̃) be a seed. The associated cluster algebra CA ⊂ F is the Q-
subalgebra of F generated by all cluster variables in all seeds obtained from (x, M̃) via iterated
seed mutation.

Given a marked surface S, an arc in S is an embedded curve γ : [0, 1] → S with endpoints
in M , and otherwise disjoint from M , considered up to homotopy and reversal of orientation.
We forbid the (homotopy classes of) constant arcs. The edges of a triangulation of S can be
considered as arcs. A boundary arc is an arc contained in ∂S.

We now fix a marked surface S together with a maximal collection of non-crossing arcs,
which thus decompose S into triangles. Such a collection of arcs is referred to as an (ideal)
triangulation. Let m1 be the number of interior arcs, labeled arbitrarily as 1, . . . ,m1, and m2
be the number of boundary arcs, labeled arbitrarily as m1 + 1, . . . ,m1 +m2. For example, the
triangulation in Example 3.3 has one interior arc and four boundary arcs.

Definition 3.23 ( [FST08, Definition 4.1], [FT18]). The extended signed adjacency matrix
M̃ = ∑

∆M∆ is the (m1 +m2)×m1-matrix given by the sum over all ideal triangles ∆ of the
triangulation of the (m1 +m2)×m1-matrices defined by

(M∆)i,j =


1 if ∆ has sides i and j with i following j in the counterclockwise direction,
−1 if ∆ has sides i and j with i following j in the clockwise direction,
0 else.

We obtain a labeled seed
(
x, M̃

)
with x = (y1, . . . , ym1+m2) and denote by CAS the associ-

ated cluster algebra.

Theorem 3.24 ([FT18, Theorem 8.6]). The cluster variables of CAS are canonically in bijection
with the arcs in S. The frozen cluster variables correspond to the boundary arcs. A set of cluster
variables of CAS forms a cluster if and only if the corresponding arcs form an ideal triangulation
of S.

Remark 3.25. The cluster exchange relations are given by the Ptolemy relations

γγ′ = γ1γ2 + γ3γ4

for an arrangement of arcs as follows
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γ

γ′

γ1

γ2 γ3

γ4

where the arcs are understood to continue identically outside of the dotted circle.

3.7 The categorification of the cluster algebra

Definition 3.26. Let T ∈ Cc
S.

• We call T rigid (with respect to the exact structure on Cc
S) if Ext1,CY(T, T ) ≃ 0.

• We call T basic if T is the direct sum of non-equivalent (non-vanishing) indecomposable
object.

• We call T maximal rigid if T is rigid, basic and maximal with this property, meaning that
if T ⊕ Y is basic and rigid for some Y ∈ Cc

S, then Y ≃ 0.

• We call T cluster tilting if T is rigid, basic and X ∈ Cc
S is a direct sums of direct summands

of T if and only if Ext1,CY
Cc

S
(T,X) ≃ 0. Note that every cluster tilting object is maximal

rigid.

Theorem 3.27 ([Chr22a]).

i) Let γ be a matching curve in S. Then Mγ ∈ Cc
S is rigid if and only if the matching curve

γ has no self-crossings. The collection of equivalence classes of rigid objects in Cc
S is thus

in bijection with the collection of cluster variables of the cluster algebra CAS.

ii) Consider a collection I of distinct matching curves in S. Then
⊕

γ∈IMγ is a maximal
rigid object if and only if it is a cluster tilting object, which is the case if and only if the
matching curves in I have no crossings and decompose S into triangles. The collection of
equivalence classes of cluster tilting objects in Cc

S is thus in bijection with the collection of
clusters of the cluster algebra CAS.

Proof. Part i) follows from the fact that Ext1,CY
CS

(Mγ ,Mγ) ≃ k⊕2icr(γ,γ) vanishes if and only if
γ has no self-crossings. Very similar arguments show that maximal rigid objects and cluster
tilting objects coincide and are in bijection with ideal triangulations.

The mutation of the clusters in the cluster algebra is categorified by a corresponding notion
of mutation of cluster tilting objects. There is also a decategorification map, known as the
cluster character, which allows to directly relate the objects in CS with the elements of the
cluster algebra, see [Chr22a].
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