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Abstract

We relate group quotients of dg-categories and linear stable ∞-categories. Given a group
acting on a dg-algebra, we prove that the skew group dg-algebra is Morita equivalent to the
dg-categorical homotopy group quotient. We also treat the cases of group actions on dg-
categories, with corresponding skew group dg-categories, and of orbit dg-categories. Finally,
we describe a version of the skew group algebra in the setting of ring spectra and relate it
with ∞-categorical group quotients.
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1 Introduction
Skew group algebras and skew group dg-categories
The skew group algebra is a classical construction in the representation theory of finite
dimensional algebras [RR85] and also appears in the construction of non-commutative reso-
lutions of singularities [KV00,VdB22]. As input for its construction serves an algebra A over
a field k and a group G acting on A by automorphisms. The skew group algebra AG has
as underlying vector space the coproduct A⨿G, with multiplication determined on additive
generators by (g1, a1) · (g2, a2) = (g1g2, a1 · (g1.a2)). An analogue of this construction is
also known in the case that A is a dg-algebra, dg-category or even an A∞-category, see for
instance [Meu20,OZ22,AP24].

The representation theory of the skew group algebra AG is typically better behaved than
that of the algebra of fixed points AG, which is why AG has become a standard construction.
Indeed, under some finiteness assumptions, the module category mod(AG) is equivalent to
the category mod(A)G of G-equivariant A-modules, see [Dem11].
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By passing to the setting of dg-categories, we can clarify the universal property of the
skew group algebra:
Proposition 1.1 (Proposition 3.5 and Remark 3.6). Fix a base field k. Let A be a dg-
category with a strict action by a group G. We consider the G-action as a functor

ρ : BG → dgCatk ,

where BG is the classifying space of G. The homotopy colimit1 of ρ is Morita equivalent to
the skew group dg-category, denoted A ∗G.

If A has a single object, we can identify it with a dg-algebra and in this case A ∗G = AG
describes a dg-version of the skew group algebra.

The above homotopy colimit is also called the homotopy group quotient of A by G. The
homotopy limit of ρ can be seen as the dg-category of G-equivariant perfect dg-modules.
The advantage of using homotopy colimits instead of homotopy limits is that it allows to
avoid any finiteness assumptions. Note also the novelty that we impose no assumptions on
the characteristic of the ground field k.

In the case G = Z, we will also treat non-strict actions and show that the orbit dg-
category, recently constructed for non-strict Z-actions in [FKQ24], describes the homotopy
colimit in Proposition 4.5.

To prove Proposition 1.1, we construct a strict cocone under a diagram equivalent to
ρ : BG → dgCatk, whose tip is Morita equivalent to AG. Passing to derived ∞-categories,
we obtain an induced functor from the ∞-categorical colimit D(A)G to the derived ∞-
category of AG. We use the ∞-categorical colimit D(A)G to describe the homotopy colimit,
via the equivalence of dg-categories up to Morita equivalence with compactly generated k-
linear stable ∞-categories. This functor D(A)G → D(AG) is an equivalence, which is shown
by comparing the morphism objects of generators.

We also give a separate proof of Proposition 1.1 under some cofibrancy assumptions, by
exhibiting the skew-group algebra as the strict dg-categorical colimit of a cofibrant diagram,
see Proposition 3.10.

The results of this note will not surprise experts, but instead fill a gap in the literature
and attempt to unify different perspectives on group quotients. Exhibiting ∞-categorical
universal properties of the dg-categorical constructions makes these accessible to powerful
∞-categorical arguments. For instance, an immediate consequence of the above results is
that the passage to skew group dg-algebras and skew group dg-categories commutes with
∞-categorical colimits in LinCatModk

, as colimits commute with colimits. Reversing the
perspective, the results of this note also serve to obtain concrete models for the abstract ∞-
categorical constructions. We illustrate this by describing periodic derived ∞-categories and
periodic topological Fukaya categories of surfaces in terms of orbit categories in Section 4.3.

Group actions on linear stable ∞-categories
Let G be a group. The classifying space BG is the category with a single object ∗ with
endomorphisms G. We work over a base E∞-ring spectrum R and denote ModR denote the
symmetric monoidal stable ∞-category of R-module spectra. We denote by

LinCatModR
= LModModR

(PrL)

the ∞-category of ModR-linear presentable ∞-categories (these are automatically stable).
The standard way to define an action of G on a ModR-linear ∞-category C is as a functor

BG → LinCatModR
, mapping ∗ to C. Central to our treatment of group actions will be the

following equivalent way to such G-actions, see for instance [CCRY22,BMCSY23]: forming
the coproduct of ModR over G yields a monoidal ∞-category Mod⨿G

R ∈ LinCatModR
, called

the categorical group algebra. A G-action on C can equivalently be expressed as a left
Mod⨿G

R -action on C.
1With respect to the Morita model structure on the category dgCatk of dg-categories.
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This perspective allows to apply the powerful and well developed framework of ∞-
categorical algebra objects and modules of [Lur17] to the study of group actions and group
quotients. For instance, the ∞-categorical colimit over BG amounts in terms of left actions
to tensoring with the ModR-Mod⨿G

R -bimodule ModR. Using this perspective, desired basic
properties of group quotients readily follow.

Skew group ring spectra
In Section 5, we generalize the construction of the skew group algebra to the setting of a
group G acting on an R-linear ring spectrum A. The skew group algebra AG is then an R-
linear ring spectrum with underlying spectrum the coproduct A⨿G, and the multiplication
generalizing the above. The actual construction of the ring spectrum AG is based on universal
constructions, see Remark 5.4 for a summary. Proposition 1.1 then generalizes as follows:

Theorem 1.2. Let R be the base E∞-ring spectrum and A ∈ Alg(ModR) be an R-linear
ring spectrum. Let ρ : BG → Alg(ModR) be an action of a group G on A. The colimit of
the functor between ∞-categories

BG
ρ−−→ Alg(ModR)

RMod(-)−−−−−→ LinCatModR
(1)

is equivalent to RModAG.

We remark that the limit of the functor (1) is equivalent to its colimit, since we are in
the setting of presentable ∞-categories, and hence to RModAG, see Lemma 2.7.

Comparison with previous results
Classical skew group algebras
Given a category C with an action by a group G, we denote by CG the category of G-
equivariant objects. Note that CG describes the homotopy limit of a functor BG → Cat,
mapping the basepoint of BG to C, see Remark 3.8. Given a (not necessarily finite dimen-
sional) algebra A over a commutative ring k, we denote by mod(A) the abelian category of
finite dimensional right A-modules and by Mod(A) the (non-small) abelian category of right
A-modules.

Proposition 1.3 ([Dem11, Prop. 2.48]). Let k be a field and let G be finite group whose
order does not divide the characteristic of k. Suppose that G acts on a finite dimensional
k-algebra A. Then there exists an equivalence of categories

mod(A)G ≃ mod(AG) .

The above equivalence of categories extends to the (bounded) derived 1-categories, using
that Db(mod(A)G) ≃ Db(mod(A))G, see [Ela14, Thm. 7.1] or [Che15,Bal11]. Conversely, the
equivalence of module categories from Proposition 1.3 can be recovered from the equivalence
of derived categories by restricting to the hearts. Theorem 1.2 and Lemma 2.7 thus allow us
to generalize Proposition 1.3:

Corollary 1.4. Let k be a commutative ring and G a group acting on a k-algebra A. There
exists an equivalence of derived ∞-categories

D(A ∗G) ≃ D(A)G := limBGD(A) .

Passing to homotopy 1-categories, this equivalence restricts to an equivalence of abelian sub-
categories Mod(A ∗G) ≃ Mod(A)G.

Note that if furthermore G is finite and A finite dimensional, then this equivalence re-
stricts to the finite dimensional module categories: mod(A ∗G) ≃ mod(A)G.

The proof is given in Section 3.1.
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Ring spectra
Let R be the base E∞-ring spectrum. Given a group G, the skew group algebra RG of the
trivial G-action on R recovers the R-linear group algebra of G. In this case, Theorem 1.2
recovers the well known equivalence of ∞-categories:

RModRG ≃ Fun(BG,ModR) ≃ colimBG ModR .

Previous results in the literature also concern an analogue of Theorem 1.2 in the case
that A = R is the base ring spectrum and G is a monoid in the ∞-category of spaces.
The restriction A = R corresponds to the assertion that the functor BG → LinCatModR

is
pointed. We refer to [Dou05, Prop. 3.13] or [HM23, Thm. 0.0.7] in case of R = S the sphere
spectrum, and [CCRY22, Thm. 7.13] for general R. The analogue of the skew group algebra
in this setting is also called the Thom spectrum.
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Higher categorical preliminaries
We generally follow the notation and conventions of [Lur09,Lur17].

• We consider dg-categories over a fixed base field k. The derived ∞-category D(B) of
a dg-category B is defined as the Ind-completion of the dg-nerve IndNdg(Perf(B)) of
the dg-category of cofibrant compact right dg-B-modules. The passage to the derived
∞-category defines a colimit preserving and reflecting functor between ∞-categories

D(-) : N(dgCatk)[M−1] → LinCatModk
,

with M the collection of Morita equivalences.
• R will usually denote a base E∞-ring spectrum. Given a ModR-linear ∞-category D

and X,Y ∈ D, we write MorD(X,Y ) ∈ ModR for the ModR-linear morphism object.
• Given a regular cardinal κ, we denote by LinCatκModR

= ModModR
(PrLκ ) the presentable

∞-category of ModR-modules in the presentable ∞-category PrLκ of κ-compactly gen-
erated presentable ∞-categories, as in [Lur17, Notation 5.3.2.8]. Its presentability is
the advantage of LinCatκModR

over LinCatModR
.

Given a ModR-linear monoidal ∞-category C ∈ Alg(LinCatModR
), we choose a suffi-

ciently large regular cardinal κ as in [Lur17, Lem. 5.3.2.12], for which in particular C

is κ-compactly generated. We also denote

LinCatκC = LModC(LinCatκModR
)

for the presentable ∞-category of κ-compactly generated C-linear categories.
• Given a presentable monoidal ∞-category C, in Sections 4.8.3-4.8.5 of [Lur17], Lurie

describes a fully faithful (see [Lur17, Thm. 4.8.5.5]) functor2

Θ∗ : Alg(C) −→ (LinCatC)C/ ,
2More precisely, the functor Θ∗ considered here is a restriction the functor Θ∗ of [Lur17]. We leave the choice

of C in the notation for Θ∗ implicit.
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mapping an algebra object A ∈ C to its ∞-category RModA(C) of right modules,
together with the functor - ⊗A : C → RModA(C) mapping the monoidal unit to A.
The image of the functor Θ∗ is concretely characterized in [Lur17, Prop. 4.8.5.8]. The
functor Θ is defined as the composite of Θ∗ with the forgetful functor

(LinCatModR
)ModR / → LinCatModR

.

2 ∞-categorical group actions
For the entire section, we fix a group G (which is not required to be finite).

2.1 The categorical group algebra
Given a set (or a space) X, we denote by Mod⨿X

R the colimit over X of the constant diagram
in LinCatModR

with value ModR. Note that Mod⨿X
R ≃ Mod×X

R also describes the limit over
X, which follows from the equivalence PrL ≃ (PrR)op.

There is an essentially unique colimit preserving functor

Mod⨿(-)
R : S → LinCatModR

= ModModR
(PrL) ,

determined by mapping ∗ to ModR. Furthermore, since S is the unit object in the symmet-
ric monoidal ∞-category PrL, the functor Mod⨿

R lifts essentially uniquely to a symmetric
monoidal functor (Mod⨿(-)

R )⊗ : S⊗ → LinCat⊗
ModR

, see [Lur17, Prop. 3.2.1.8].

Construction 2.1. The group G gives rise to an Assoc-algebra object in Set⊗, i.e. a mor-
phism of ∞-operads Assoc⊗ → Set⊗ over N(Fin∗), see also [Lur17, Def. 4.1.1.3] for the
definition of Assoc⊗, where the symmetric monoidal structure of Set⊗ is the Cartesian sym-
metric monoidal structure.

Composing with the inclusion of symmetric monoidal ∞-categories Set⊗ ⊂ S⊗ and
the symmetric monoidal functor (Mod⨿(-)

R )⊗, we obtain an Assoc-algebra object Mod⨿G
R ∈

AlgAssoc(LinCatModR
), meaning a ModR-linear monoidal ∞-category.

We note that any group homomorphism G → G′ induces a monoidal functor Mod⨿G
R →

Mod⨿G′

R .
Definition 2.2. The monoidal ∞-category Mod⨿G

R from Construction 2.1 is called the cat-
egorical group algebra of G.

Given g ∈ G, we denote the object of Mod⨿G
R lying in the g-th component with value R

by Rg. The monoidal unit of Mod⨿G
R is given by Re.

Remark 2.3. The unique group homomorphism ψ : G → {e} gives by Construction 2.1
rise to a monoidal functor ψ : Mod⨿G

R → ModR. Explicitly, ψ maps a G-tuple (Ag)g∈G to∐
g∈GAg.

Lemma 2.4.
(1) The monoidal ∞-category Mod⨿G

R is locally rigid in the sense of [Lur18, Def. D.7.4.1].
(2) If F : C → D is a Mod⨿G

R -linear functor whose right adjoint G preserves colimits, then
G is also Mod⨿G

R -linear.

Proof. We begin with showing the local rigidity. Conditions (1) and (2) of Definition D.7.4.1
are clear. The unit object of Mod⨿G

R is given by the object Re, with e the unit of G, and
clearly compact, giving condition (3).

The subset of left and right dualizable objects is closed under finite limits and colimits.
For condition (4), it thus suffices to check that each object Rg with g ∈ G admits a left and
right dual. Since Rg is invertible with inverse Rg−1 , this is clear.

Part (2) of the Lemma follows from part (1) by [Lur18, Rem. D.7.4.4]. The broken
reference at the end of loc. cit. may refer to the fact that the R-linear structure on G in
question is induced by the R-linear structure of F via [Lur17, Cor. 7.3.2.12], so that the
existence of the R-linear structure in question is a property.
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Example 2.5. We can consider the monoidal functor ψ : Mod⨿G
R → ModR as a Mod⨿G

R -
linear functor. Its right adjoint ψR : ModR → Mod⨿G

R , G-componentwise given by the
identity functor, inherits by Lemma 2.4 the structure of a Mod⨿G

R -linear functor.
The composite ψR ◦ ψ : Mod⨿G

R → Mod⨿G
R is equivalent to

∐
g∈GRg ⊗ (-) and inherits

the structure of a monad.
If G is a finite group, then the right adjoint ψRR of ψR agrees with ψ. The inherited

Mod⨿G
R -linear structure of ψRR also coincides with that of ψ. This follows from the fact

that Mod⨿G
R is the free Mod⨿G

R -linear ∞-category generated by a point, so that both linear
functors are determined by the value of the monoidal unit Re.

2.2 Group actions and group quotients
We denote by BG the classifying space of G, meaning the 1-category with a unique object
∗ and endomorphisms G. We will not distinguish between BG and its nerve N(BG) ∈ Set∆
in notation.

A G-action on an object C in an ∞-category C is understood to be a functor BG → C ,
mapping ∗ to C.

Definition 2.6. Let C be an ∞-category that admits limits and colimits. Given G-action
ρ : BG → C on C ∈ C , we call

• the limit CG := lim(ρ) the fixed points of the G-action on C.
• the colimit CG := colim(ρ) the group quotient of C by G.

Lemma 2.7. Consider a functor ρC : BG → LinCatModR
describing a G-action on a ModR-

linear ∞-category C. Its colimits CG is equivalent to its limit CG in LinCatModR
.

Proof. The conservative functor LModMod⨿G
R

(PrL) → PrL reflects limits and colimits and
preserves both by [Lur17, Cor. 3.4.3.6, 3.4.4.6]. The right adjoint diagram of the colimit
diagram of ρC again lies in LModMod⨿G

R
(PrL) by Lemma 2.4. It is a limit diagram, since its

underlying diagram in PrL is, as follows from the duality PrL ≃ (PrR)op and the fact that
the functors PrR,PrL → Cat∞ preserve and reflect limits. Note that BGop ≃ BG, since
BG is a space, hence the right adjoint diagram of ρC is equivalent to ρC.

We choose a sufficiently large regular cardinal κ. G-actions on ModR-linear ∞-categories
can be equivalently expressed as follows:

Proposition 2.8 ([CCRY22,BMCSY23]). There exists a canonical equivalence of ∞-categories

Fun(BG,LinCatκModR
) ≃ LinCatκMod⨿G

R
.

Proof. This is [CCRY22, Lem. 4.49] applied in the case C = LinCatκModR
and A = G.

Remark 2.9. The relation between a G-action ρ : BG → LinCatκModR
and the Mod⨿G

R -linear
structure on a given ModR-linear ∞-category C can be explicitly described as follows: given
g ∈ G, its action ρ(g) : C ≃ C is equivalent to the functor Rg ⊗ - : C ≃ C.

Lemma 2.10 ([CCRY22, Lem. 4.51]). Consider a group action BG → LinCatModR
on C

and the corresponding Mod⨿G
R -linear structure of C of Proposition 2.8.

(1) The group quotient of C is equivalent to the relative tensor product:

CG ≃ ModR ⊗Mod⨿G
R

C ∈ LinCatModR
.

(2) The functor C → CG from the colimit cone is equivalent to ψ ⊗Mod⨿G
R

C, with ψ as in
Remark 2.3.
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Proof. Consider the morphisms of spaces i : ∗ → BG and π : BG → ∗. The morphism
π induces under the functor Fun(-,LinCatκModR

) : S → ModLinCatκ
ModR

the colimit functor
Fun(BG,LinCatκModR

) → LinCatκModR
. By [CCRY22, Lem. 4.51], this colimit functor is

given by the tensor product functor ModR ⊗Mod⨿
R
G(-). Part (1) now follows from the fact

that the inclusion LinCatκModR
⊂ LinCatModR

preserves colimits [Lur17, Lem. 5.3.2.9].
For part (2), we note that by [CCRY22, Lem. 4.51], the natural equivalence colim ≃

(-) ⊗Mod⨿G
R

ModR : Fun(BG,LinCatκModR
) → LinCatκModR

lies under LinCatκModR
. The func-

tor LinCatκModR
→ Fun(BG,LinCatκModR

) is given by i!, and passing to the right adjoint
induces the natural transformation

i∗ ≃ colim i!i
∗ counit====⇒ colim: Fun(BG,LinCatκModR

) → LinCatκModR
,

which evaluates at C to functor C → CG from the colimit cone. The desired description of
this natural transformation follows from the fact that the counit

counit : i!i∗ ≃ (-) ⊗Mod⨿G
R

Mod⨿G
R ⊗ModR

Mod⨿G
R ==⇒ (-) ⊗Mod⨿G

R
ModR ⊗ModR

Mod⨿G
R ≃ id

is given by (-) ⊗Mod⨿G
R

ψ ⊗ModR
Mod⨿G

R .

Lemma 2.11. Consider a group action ρC : BG → LinCatModR
on C and the corresponding

Mod⨿G
R -linear structure.

(1) The functor

ψR ⊗Mod⨿G
R

C : CG ≃ ModR ⊗Mod⨿G
R

C −→ Mod⨿G
R ⊗Mod⨿G

R
C ≃ C (2)

is monadic.
(2) The endofunctor of C underlying the adjunction monad ψRψ⊗Mod⨿G

R
C of the adjunction

ψ ⊗Mod⨿G
R

C ⊣ ψR ⊗Mod⨿G
R

C is given by
∐
g∈G ρC(g).

(3) If G is finite, then the functor (2) is also left adjoint to C ⊗Mod⨿G
R

ψ : C → CG.

Proof. We begin with showing (1). By Lemma 2.7, CG is equivalent to the limit of ρC, and
hence to the ∞-category of coCartesian sections of the Grothendieck construction of ρC,
see [Lur24, Prop. 05RX]. Under this equivalence, the functor

C ⊗Mod⨿G
R

ψR : CG ≃ colim(ρC) −→ C

evaluates a coCartesian section at ∗ ∈ BG. Thus, the functor is clearly conservative and
hence monadic by [Lur17, Thm. 4.7.3.5].

For (2), we note the equivalence

ψRψ ⊗Mod⨿G
R

C ≃
∐
g∈G

(Rg ⊗ (-)) ⊗Mod⨿G
R

C ≃
∐
g∈G

ρC(g) .

For (3), we note that by Example 2.5, if G is finite, the Mod⨿G
R -linear functor ψR is also

left adjoint to ψ, which induces the desired adjunction.

Remark 2.12. We expect that Statement (3) of Lemma 2.11 also holds in the more general
case where G is a monoid in sets, such as G = N, or even a monoid of spaces. However, the
proof of the statement uses the Mod⨿G

R -linearity of ψR, which fails already for G = N.

3 Skew group dg-categories
In this section, we consider a dg-category A with a strict action by a group G. In Section 3.1,
we relate the skew group dg-category with the ∞-categorical group quotient. In Section 3.2,
we describe under some conditions the skew group dg-category as the colimit of a cofibrant
diagram.
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3.1 Skew group dg-categories as ∞-categorical group quotients
We fix a group G with a strict action on a dg-category A. We can equivalently consider
the action as a functor ρA : BG → dgCatk mapping ∗ to A. We define the skew group
dg-category A ∗ G as follows, analogous to the definition of the skew group A∞-category
in [OZ22, Def. 5.6], [AP24, Def. 2.11].

• The set of objects of A ∗ G is given by the set of objects of A. We will however write
X̃ ∈ A ∗G for the object corresponding to X ∈ A.

• Given X̃, Ỹ ∈ A ∗G, the morphism chain complex is given by

MapA∗G(X̃, Ỹ ) =
∐
g∈G

MapA(g.X, Y ) .

Given a morphism a : g.X → Y in A, we write (g, a) : X̃ → Ỹ for the corresponding
morphism in A ∗ G. Every morphism in A ∗ G can be uniquely written as a sum∑
g∈G(g, ag), with finitely many non-zero summands.

• the composition map

(-) ◦ (-) : MapA∗G(X̃, Ỹ ) × MapA∗G(Ỹ , Z̃) −→ MapA∗G(X̃, Z̃)

is defined on generators by (g2, b) ◦ (g1, a) := (g2g1, b ◦ (g2.a)).
There is an apparent dg-functor FA : A → A ∗ G, given by the assignments X 7→ X̃ on

objects and a 7→ (e, a) on morphisms, where e ∈ G is the unit element.
We can define aG-action ρA∗G : BG → dgCatk on A∗G by letting h ∈ G act as h.X̃ = h̃.X

and h.(g, a) = (hgh−1, h.a). Indeed, we find:

h. ((g2, b) ◦ (g1, a)) = (hg2g1h
−1, h.(b ◦ (g2.a)))

= (hg2h
−1, h.b) ◦ (hg1h

−1, h.a) = h.(g2, b) ◦ h.(g1, a)

We observe the following:

Lemma 3.1. The functor FA : A → A∗G extends to a morphism ρA → ρA∗G in Fun(BG, dgCatk).

Definition 3.2. We choose for every G-orbit [X] of objects in A an arbitrary representative
X ∈ A. The dg-category (A ∗ G)red is defined as the full dg-subcategory of A ∗ G on the
objects of the form X̃, with X a chosen representative.

We note that the inclusion (A ∗G)red ⊂ A ∗G is an equivalence of dg-categories.

Lemma 3.3. Suppose that the action of G is free on the set of objects of A. Then the
G-action on (A ∗ G)red induced by the equivalence of dg-categories (A ∗ G)red ≃ A ∗ G is
trivial.

Proof. We unraveling the induced G-action on (A ∗ G)red. Fix h ∈ G. The action of h is
given by the composite

(A ∗G)red ≃ A ∗G ρA∗G(h)−−−−−→ C ∗G ≃ (A ∗G)red .

This action clearly acts as the identity on objects. Given a morphism (g, a) : X̃ → Ỹ in
(C ∗G)red, the action of h is given by the composite

X̃
(h−1,idX )−−−−−−−→ h̃.X

(hgh−1,h.a)−−−−−−−−→ h̃.Y
(h,idY )−−−−−→ Ỹ

which is by definition again given by (g, a).

We can always arrange the G-action on A to be free on the set of objects:

Lemma 3.4. The dg-category a with the group action by G is equivalent in Fun(BG, dgCatk)
to a dg-category A′ with a G-action that is free on its set of objects.
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Proof. The set ob(A) of objects ofA splits into the orbits of theG-action ob(A)
∐

[x]∈ob(A)/GG.x.
We choose a set of representatives R ⊂ ob(A) of the orbits ob(A)/G. We define the set of
objects ob(A′) of A′ to be pairs (x, g) with x ∈ R and g ∈ G. The morphism complexes are
defined as MapA′((x, g), (y, h)) = MapA(g.x, h.y) with composition as in A. The apparent
dg-functor π : A′ → A, given on objects by (x, g) → g.x is fully faithful and essentially sur-
jective, and hence an equivalence of dg-categories. The G-action on A induces a G-action
on A′, given on objects by h.(x, g) = (x, hg) and on morphisms complexes as for A. The
equivalence of dg-categories π is indeed G-equivariant.

Let A′ be as in Lemma 3.4. Then (A′ ∗G)red is by Lemma 3.3 the tip of a cocone under
the diagram BG → dgCatk describing the G-action on A′. Passing to derived ∞-categories,
we see that

D((A′ ∗G)red) ≃ D(A′ ∗G) ≃ D(A ∗G)
defines the tip of a cocone under the diagram

ρD(A) : BG → LinCatModk

describing the G-action on D(A). We denote the colimit of the functor ρD(A) by D(A)G. By
its universal property, there is an induced functor

ζ : D(A)G −→ D(A ∗G)

Proposition 3.5. The above functor ζ is a an equivalence of k-linear ∞-categories.

Remark 3.6. The ∞-category underlying the model category dgCatk with the Morita model
structure is equivalent to the ∞-category LinCatcpt-gen

k of k-linear, compactly generated,
presentable, and stable ∞-categories as well as compact objects preserving, left adjoint func-
tors, see [Coh13]. In particular, homotopy colimits in dgCatk are described by ∞-categorical
colimits in LinCatcpt-gen

k , see [Cis19, Rem. 7.9.10]. Note further that the forgetful func-
tor LinCatcpt-gen

k → LinCatk preserves and reflects colimits. Thus, by Proposition 3.5,
Perf(A ∗G) describes the homotopy colimit of ρA.

Proof of Proposition 3.5. By construction, there is a commutative diagram of compact ob-
jects preserving k-linear functors,

D(A)

D(A)G D(A ∗G)

D(FA)F

ζ

(3)

where F denotes the functor contained in the colimit diagram. Note that D(A) is generated
under colimits by the objects arising from the objects in A, which are automatically compact.
Similarly, the images of the objects in A under F and D(FA) compactly generate, using that
F is monadic by Lemma 2.11 and [Lur17, Prop. 4.7.3.14], respectively, that FA is essentially
surjective. It hence suffices to show that for all X,Y ∈ A, the morphism

MorD(A)G
(F (X), F (Y )) → MorD(A∗G)(D(FA)(X),D(FC)(Y )) (4)

is an equivalence: given this, the fully faithfulness of the colimit preserving functor ζ on arbi-
trary objects follows from ’pulling the colimits out of the Homs’, and the essential surjectivity
of ζ follows from the compact generation by objects in A. We have equivalences

MorD(A)G
(F (X), F (Y )) ≃ MorD(A)(X,FRF (Y )) ≃ MorD(A)(X,

∐
g∈G

g.Y ) ≃
∐
g∈G

MapA(g.X, Y ) ,

(5)
where the last equivalence uses that X ∈ D(A) is compact, and

MorD(A∗G)(D(FA)(X),D(FA)(Y )) ≃ MapA∗G(X̃, Ỹ ) =
∐
g∈G

MapA(g.X, Y ) . (6)
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By the commutativity of the diagram (3), the morphism (4) restricts to an equivalence on the
MapA(X,Y )-summands of (5) and (6). The morphism (4) also restricts to equivalences on
the other summands which follows from combining the following two observations: Firstly,
for every g ∈ G, the equivalence F (g.X) ≃ F (X) is mapped to an equivalence g̃.X ≃
D(FA)(g.X) ≃ X̃ = D(FA)(X). Secondly, together with the morphisms coming from A,
these equivalences generate all morphisms in D(A)G and D(A ∗G).

Remark 3.7. In the case that A is an A∞-category equipped with a strict group action
as in [OZ22,AP24], the above construction easily adapts to show that the skew group A∞-
category A ∗ G of [OZ22, AP24] is equivalent to the ∞-categorical colimit over BG in the
∞-category CatA∞ [M−1] of A∞-categories localized at Morita equivalences. For this, we
use the equivalences of ∞-categories CatA∞ [M−1] ≃ dgCatk[M−1] ≃ LinCatcpt-gen

k , see
[Pas24,COS24] and [Coh13].

Proof of Corollary 1.4. The derived ∞-categories D(A) and D(AG) of the algebras are
equivalent to the module ∞-categories RModA and RModAG, respectively. Using Theo-
rem 1.2 and Lemma 2.7, we thus have an equivalence of ∞-categories:

D(AG) ≃ limBGD(A) = D(A)G .

By Remark 3.8, N(Mod(A)G) embeds fully faithfully into D(A)G. The nerve N(Mod(AG))
also embeds fully faithfully into D(AG) as the standard heart. It remains to note that these
two full subcategories are identified under the above equivalence.

An object in D(AG) lies in the heart if and only if its image under the monadic functor
RHom(AG, -) : D(AG) → D(A) lies in the heart of D(A). Under the equivalence with the
limit D(A)G, this functor corresponds to the functor in the limit cone. An object in D(A)G
corresponds to a coCartesian section of the Grothendieck construction over BG, and lies in
the image of N(Mod(A)G) if and only if its evaluation at the unique object ∗ ∈ BG lies
in N(Mod(A)) ⊂ D(A). The evaluation functor at ∗ ∈ BG on coCartesian sections also
describes the functor D(A)G → D(A) in the limit cone. Hence, both full subcategories have
the same essential images.

Remark 3.8. We describe the relation of the 1-category of equivariant objects with limits
in the ∞-category Cat∞ of ∞-categories. Let Cat denote the 1-category of 1-categories.
Consider the adjunction

h(-) : Set∆ ↔ Cat :N(-)

between the homotopy category functor and the simplicial nerve functor. Note that N(-)
is fully faithful. This adjunction is a Quillen adjunction with respect to the Joyal model
structure on Set∆ and the standard model structure on Cat. We hence obtain an adjunction
between ∞-categories h(-) : Cat∞ ↔ Cat[W−1] :N(-), where W denotes the collection of
equivalences of 1-categories. The derived functor N(-) is also fully faithful. Since it preserves
∞-categorical limits, and we see that limits in Cat∞ of diagrams valued in nerves of 1-
categories are equivalent to nerves of 1-categories, and hence determined by their homotopy
categories. Given a diagram ρ : BG → Cat, ∗ → C, one finds that the homotopy category of
the limit of N ◦ ρ : BG → Cat∞ is equivalent to the category CG of G-equivariant objects of
C, which can be seen using the explicit description of limits via coCartesian sections of the
Grothendieck construction [Lur24, Prop. 05RX]. Thus, we have

N(CG) ≃ limBGN ◦ ρ ∈ Cat[W−1] ⊂ Cat∞, .

3.2 Skew group dg-categories as homotopy colimits of cofibrant di-
agrams
In this section, we describe an alternative way to relate skew group dg-categories with group
quotients using purely model categorical techniques.
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We consider the functor category Fun(BG, dgCatk) as equipped with the projective model
structure inherited from the quasi-equivalence model structure on dgCatk. The weak equiv-
alences are thus the pointwise quasi-equivalences and the fibrations are the pointwise fibra-
tions.
Lemma 3.9. Consider a functor ρC : BG → dgCatk describing the action of a group G
on a dg-category A. If A is cofibrant and the action free on the set of objects of A, then
ρA ∈ Fun(BG, dgCatk) is a cofibrant object with respect to the projective model structure.

Proof. Consider an acyclic fibration π : B → C and a morphism F : A → C in Fun(BG, dgCatk).
To prove the cofibrancy of ρA, we must find a lift A → B of F along π in Fun(BG, dgCatk).

Since A is cofibrant in dgCatk, we can choose a lift F̃ of F along π in dgCatk. We can
choose the lift F̃ which is G-equivariant on the level of objects: we fix an object X ∈ A
in each G-orbit of A. If for g ∈ G, we have F̃ (g.X) ̸= g.F̃ (X), we choose an equivalence
F̃ (g.X) ≃ g.F̃ (X) lifting the identity F (g.X) = g.F (X) and redefine F̃ (g.X) as g.F̃ (X) and
change the action on morphisms using this equivalence.

We choose a set R of representatives of the G-orbits of the objects of A. We define a new
dg-functor F ′ : A → B as follows:

• On objects, F ′ is defined as F̃ .
• ForX,Y ∈ R and g1, g2 ∈ G, we define F ′ : MapA(g1.X, g2.Y ) → MapB(g1.F

′(X), g2.F
′(Y ))

on α ∈ MapA(g1.X, g2.Y ) as g1.F̃ (g−1
1 .α).

We first note that F ′ defines a lift of F along π in dgCatk: on objects that is clear and
on a morphism α ∈ MapA(g1.X, g2.Y ), we have

π ◦ F ′(α) = π(g.F̃ (g−1.α)) = g.π(F̃ (g−1.α)) = g.F (g−1.α) = F (α)

using the G-equivariance of F and π.
Finally, we check that F ′ is indeedG-equivariant, i.e. defines the desired lift in Fun(BG, dgCatk).

On objects, this was noted above. Consider a morphism α ∈ MapA(g1.X, g2.Y ) and h ∈ G.
Then

F ′(h.α) = (hg1).F̃ ((hg1)−1.(h.α)) = h.(g1.F̃ (g−1
1 .α)) = h.F ′(α) ,

as desired.

Proposition 3.10. Under the assumptions of Lemma 3.9, the dg-category (A ∗ G)red from
Definition 3.2 is the tip of a (strictly commuting) homotopy colimit cocone under the functor
ρA with respect to the quasi-equivalence model structure on dgCatk.

Proof. It is straightforward to see that the cocone is a colimit cocone in the 1-category
dgCatk. Since the diagram ρC is cofibrant by Lemma 3.9, this colimit cocone is also a
homotopy colimit cocone.

4 Orbit categories
In this section, we will specialize to the case where G = Z. The arising group quotients
are known as orbit categories. After a general discussion in the ∞-categorical context in
Section 4.1, we consider non-strict Z-action on dg-categories in Section 4.2. Finally, we
describe examples arising from periodic derived categories in Section 4.3.

4.1 General orbit ∞-categories
Let L denote the simplicial set with a unique 0-simplex ∗ and a unique non-degenerate
1-simplex 1: ∗ → ∗.
Definition 4.1. Let F : C → C be a ModR-linear endofunctor of a ModR-linear ∞-category
C. The ModR-linear orbit ∞-category C/F is defined as the colimit of the functor

L −→ LinCatModR
, ∗ 7→ C, (1 : ∗ → ∗) 7→ F . (7)
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Remark 4.2. The orbit category C/F is also equivalent to the limit of the functor (7)
and hence to the ∞-category of coCartesian sections of the Grothendieck construction of the
functor (7). An object of C/F thus amounts to an object X ∈ C together with an equivalence
X ≃ F (X) in C.

The lax limit of the functor (7), denoted C/laxF , is given by the ∞-category of all sections
of the Grothendieck construction of (7). Its objects are given by objects X ∈ C together
with a morphism X → F (X) in C.

Lemma 4.3. Let F : C → C be a ModR-linear endofunctor.
(1) The inclusion of simplicial sets L ⊂ BN, 1 7→ 1 is inner anodyne. Pulling back along

this inclusion hence gives rise to a commutative diagram of ∞-categories:

Fun(BN,LinCatModR
) Fun(L,LinCatModR

)

LinCatModR

colim

≃

colim

(2) Pulling back along the inclusion BN ⊂ BZ yields a commutative diagram of ∞-
categories,

Fun(BZ,LinCatModR
) Fun(BN,LinCatModR

)

LinCatModR

colim colim

where the horizontal functor is fully faithful. Its essential image consists of those func-
tors BN → LinCatModR

mapping 1 to an equivalence.
In particular, the orbit category C/F of a ModR-linear equivalence F : C → C is equivalent
to the colimit over a functor BZ → LinCatModR

, mapping 1 to F .

Proof. We begin with showing part (1). That the inclusion L ⊂ BN is inner anodyne follows
from applying [Lur09, 4.1.2.3] to the diagram

∆1 {0, 1} ∗

∆N N ∗

where the central N denotes the discrete simplicial set and ∆N denotes the nerve of the poset
N. The inclusion is thus final and cofinal by [Lur09, Prop. 4.1.1.3], showing the commutativity
of the diagram in (1). The horizontal functor is an equivalence by [Lur24, Corollary 01EJ]
and [Lur24, Proposition 01EF]

We next show part (2). The inclusion BN ⊂ BZ is a weak homotopy equivalence and,
using that BZ is a Kan complex, hence final and cofinal [Lur09, Cor. 4.1.2.6]. This shows the
commutativity of the diagram in (2). The fully faithfulness of the horizontal functor amounts
to the statement that BZ is the localization of BN at the morphism 1. This can be readily
shown, for instance as follows. The localization of BN at 1 is equivalent to the localization
of L at 1, since L ⊂ BN is a categorical equivalence. This localization can be obtained as
the pushout of simplicial sets L[{1}−1] = L ⨿∆1 Q, where Q is a contractible Kan complex
with 2 nondegenerate 0-simplices, see the proof of [Lur24, Proposition 01N4]. We observe
that L[{1}−1] is a Kan complex and equivalent to BZ, since the geometric realizations of
both are equivalent to the circle S1.
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4.2 Orbit dg-categories
Given a dg-category A, we denote by repdg(A,A) the dg-category of cofibrant dg A-A-
bimodules which are right quasi-representable, see also [Kel06, FKQ24] for detailed def-
initions. We note that any such bimodule F ∈ repdg(A,A) gives rise to a dg-functor
Perf(F ) : Perf(A) → Perf(A), and thus to a Modk-linear functor D(F ) : D(A) → D(A)
between the derived ∞-categories. We call F ∈ repdg(A,A) a Morita equivalence if the
dg-functor Perf(F ) is a quasi-equivalence (or equivalently D(F ) is an equivalence of ∞-
categories).

Given F ∈ repdg(A,A), [FKQ24] defines the dg-orbit category A/FZ as a dg-localization
of the ’left lax quotient dg-category’ A/llFN, which is the dg-category with the same objects
as A and morphism complexes MapA/llFN(X,Y ) =

⊕
i∈N MapA(X,F i(Y )).

Remark 4.4. Supposing that F ∈ repdg(A,A) is a Morita equivalence, one can show that
for all X,Y ∈ A, there is a quasi-isomorphism

MapA/F Z(X,Y ) ≃
⊕
i∈Z

MapPerf(A)(X,F i(Y )) . (8)

Proposition 4.5. Let F ∈ repdg(A,A) be a Morita equivalence. Then there exists a canon-
ical equivalence of Modk-linear ∞-categories

D(A)/D(F ) ≃ D(A/FZ)

between the Modk-linear orbit ∞-category and the derived ∞-category of the dg-orbit cate-
gory.

Remark 4.6. We expect that D(A)/laxD(F ) is equivalent to the derived ∞-category of the
left lax quotient dg-category A/llFN. We further expect Proposition 4.5 to also hold true if
F is not a Morita equivalence.

Proof of Proposition 4.5. As shown in [FKQ24], there exists a dg-functor π : A → A/FZ

together with a natural equivalence π ◦ F ≃ F . Passing to compact, cofibrant modules, F
induces a dg-functor Perf(F ) : Perf(A) → Perf(A) (and not just a dg-bimodule) together
with a natural equivalence Perf(π) ◦ Perf(F ) ≃ Perf(F ). This exhibits A/FZ as the tip
of a cocone under the functor L → dgCatk[M−1], 1 7→ Perf(F ). Passing to derived ∞-
categories, this induces a Modk-linear functor D(A)/D(F ) → D(A/FZ), which is checked to
be an equivalence using an analogous argument as in the proof of Proposition 3.5.

Remark 4.7. Suppose that F : A → A is a dg-functor. An a priori different definition of
orbit dg-category is given in [Kel05], we will denote this orbit category by A/dgF . There is
an apparent diagram of dg-categories,

A A

A/dgF

F

where the natural transformation evaluates at X ∈ A to the canonical morphism F (X) →
X in A/dgF . Using the universal property shown in [FKQ24], this induces a dg-functor
A/llF

N → A/dgF , which in turn induces a dg-functor α : A/FZ → A/dgF . If F is a Morita
equivalence, the quasi-isomorphisms (8) imply that α is a a quasi-equivalence.

In the case that F is strictly invertible, the orbit dg-category A/dgF is furthermore
isomorphic to the skew group dg-category A ∗ Z from Section 3.
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4.3 Example: Periodic derived categories
Let Perf(k) be the dg-category of finite dimensional chain complexes over a field k. Consider
the invertible endofunctor [n] : Perf(k) → Perf(k) given by the shift functor. This defines a
Z-action on Perf(k), with orbit dg-category Perf(k)/[n].

Let k[tn] be the dg-algebra of graded polynomials with the monomial tn in degree n (in
homological grading). Note that k[tn] is the (n+ 1)-Calabi–Yau completion of k in the sense
of [Kel11]. We similarly denote by k[t±n ] the dg-algebra of graded Laurent polynomials.
Proposition 4.8. There are equivalences in LinCatModk

D(Perf(k)/[n]) ≃ D(k)/[n] ≃ D(k[t±n ]) .

Proof. The first equivalence is the statement of Proposition 4.5. For the second equivalence,
we first produce a functor D(k)/[n] → D(k[t±n ]) using the universal property of the colimit.
We employ the following trick, to avoid any discussions about signs for the shift functor:
any Modk-linear functor D(k) → D(k[t±n ]) is fully determined by the image of k. Since
k[t±n ][n] ≃ k[t±n ] ∈ D(k[t±n ]), we thus find a commutative diagram in LinCatModk

:

D(k) D(k)

D(k[t±n ])
k 7→k[t±n ]

[n]

k 7→k[t±n ][n]

This induces a functor D(k)/[n] → D(k[t±n ]), which is now readily checked to be fully faithful
and essentially surjective.

Remark 4.9. Let Dfin(k[tn]) ⊂ Dperf(k[tn]) denote the full subcategory of modules with
finite dimensional total homology. There is an equivalence in LinCatModk

D(k[tn])/ IndDfin(k[tn]) ≃ D(k[t±n ]) ,

see [Chr22, Lem. 2.11]. By [HI22, Rem. 2.14.(2)], there is an equivalence of dg-categories

Perf(k)/[n] ≃ Perf(k[tn])/Perf(k[tn])fin ,

where Perf(k[tn])fin denotes the dg-category subcategory of Perf(k[tn]) of dg-modules with
finite dimensional total homology. Combining these equivalences provides an alternative way
to prove Proposition 4.8
Lemma 4.10. Let C be a Modk-linear ∞-category. Then the orbit category C/[n] is equiv-
alent to the tensor product C ⊗Modk

D(k[t±n ]) in LinCatModk
.

Proof. Using that D(k) ≃ Modk and that the tensor product in LinCatModk
preserves col-

imits in the second entry, we find equivalences

C ⊗Modk
D(k[t±n ]) ≃ C ⊗Modk

colimL Modk ≃ colimL C = C/[n] .

The above allows us to obtain the following concrete description of the 1-periodic topolog-
ical Fukaya category, or equivalently Higgs category, of a marked surface studied in [Chr22].
Proposition 4.11. Let A be a finite dimensional gentle algebra and S the corresponding
marked surface in the sense of [OPS18]. Assume that every boundary component of S con-
tains at least one marked point3. Then the Higgs category H [Wu23] associated with S,
described in [Chr22], is equivalent to the perfect derived ∞-category of the orbit dg-category
Perf(A)/[1].

In particular, the 1-categorical orbit category (ho Perf(A))/[1] embeds fully faithfully into
the triangulated homotopy 1-category hoH of the Higgs category.

3This is equivalent to the assertion that A is smooth, which follows from [LP20, Lem. 3.1.3].
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Proof of Proposition 4.11. It is shown in [Chr22] the Ind-completion of the ∞-categorical
Higgs category H is equivalent to D(A) ⊗Modk

D(k[t±1 ]), see Proposition 4.16 and Theorem
8.4 in loc. cit.. The statement thus reduces to Lemma 4.10.

5 Spectral skew group algebras
We fix a base E∞-ring spectrum R. Consider a ModR-linear ∞-category C with a G-action.
In the case that C ≃ RModA has a compact generator A, the functor MorC(A, -) : C → ModR
is monadic, and hence so is the composite CG → C → ModR. The image of R under the
left adjoint adjoint ModR → CG defines a compact generator Y of CG. In the case that
A is fixed by the G-action, the R-linear endomorphism algebra of Y can be considered
the corresponding skew group algebra AG. We study this situation in more detail in the
following.

We begin with a more systematic construction of the skew group algebra AG.

Construction 5.1. Let ModR ∈ Fun(BG,LinCatModR
) denote the constant functor with

value ModR. We define the functor ξ as the following composite:

Fun(BG, (LinCatModR
)ModR /) → Fun(BG,LinCatModR

)ModR/

→ Fun(BG,LinCatModR
)Mod⨿G

R
/

≃
(

LinCatMod⨿G
R

)
Mod⨿G

R
/
.

The G action on Mod⨿G
R is given by permuting the G-components, so that colimBG Mod⨿G

R ≃
ModR ∈ LinCatModR

. This equivalence is adjoint to a morphism Mod⨿G
R → ModR in

Fun(BG,LinCatModR
) which is used for the second functor above. The third functor uses

the equivalence from Proposition 2.8.

Proposition 5.2. There is a commutative diagram of ∞-categories

Fun(BG,Alg(ModR)) Fun(BG, (LinCatModR
)ModR /) Fun(BG,LinCatModR

)

Alg(Mod⨿G
R )

(
LinCatMod⨿G

R

)
Mod⨿G

R
/

LinCatMod⨿G
R

Fun(BG,Θ∗)

ξ ≃

Θ∗

where the right vertical functor is the equivalence from Proposition 2.8. We denote the left
vertical functor by

ξAlg : Fun(BG,Alg(ModR)) → Alg(Mod⨿G
R ) .

Proof. The commutativity of the right diagram follows from the definition of ξ. To show the
commutativity of the left square, we need to prove that elements in the image of Fun(BG,Θ∗)
are mapped by ξ to elements in the image of Θ∗.

Using [Lur17, Prop. 4.8.5.8], we find that a functor BG → (LinCatModR
)ModR / , ∗ 7→

(ModR → C) factors through Alg(ModR) if and only if the image of R ∈ ModR in C,
denoted Y ∈ C, is a compact generator preserved by the G-action. Note that condition (6)
in Proposition 4.8.5.8 is automatically fulfilled, since ModR is generated by R, compare also
with the proof of [Lur17, Thm. 7.1.2.1].

Let ModR → C, R 7→ Y be as before, with Y a compact generator. We denote A =
EndC(Y ) ∈ Alg(ModR), and have C ≃ RModA. The functor ModR → C ≃ RModA is
given by (-) ⊗ A. Its image under ξ is equivalent to the functor F : Mod⨿G

R → RModA,
componentwise given by (-) ⊗A, i.e. satisfying F (Rg) ≃ A for all g ∈ G.

We record here the curious fact that the functors F and FR only depend on the ModR-
linear structure of C, and not on the Mod×G

R -linear structure, meaning the G-action on C.
This is because A is fixed by the G-action on C. The G-action will only contribute when
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describing the Mod⨿G
R -linear endomorphism algebra structure of FR(A), see Remark 5.4

below.
We again apply [Lur17, Prop. 4.8.5.8] to show that the functor F : Mod⨿G

R → RModA lies
in the image of Θ∗, thus showing the existence of the left commutative square. Conditions (1),
(2), (3) and (5) are clear. For condition (4), it suffices to observe that the right adjoint FR of
F : Mod⨿G

R → RModA is G-componentwise a functor that preserves geometric realizations,
and thus preserves geometric realizations as well. Condition (6) boils down to the statement
that FR and the counit of F ⊣ FR commute with the Mod⨿G

R -action, which is straightforward
to check.

Definition 5.3. Consider an action ρ : BG → Alg(ModR) of the group G on an R-linear
ring spectrum A. The skew group algebra AG ∈ Alg(ModR) is defined as the image of ρ
under the functors

Fun(BG,Alg(ModR)) ξAlg

−−−→ Alg(Mod⨿G
R ) Alg(ψ)−−−−→ Alg(ModR) (9)

from Remark 2.3 and Proposition 5.2.

Remark 5.4. We unravel the construction of the skew group algebra AG.
Starting with an R-linear ring spectrum A, with the group G acting on it, we have an

induced G-action on its ∞-category of modules RModA, which we can also consider as a
left-tensoring of RModA by Mod⨿G

R . Considering A as an object of RModA, we consider the
Mod⨿G

R -linear endomorphism algebra Ã ∈ Alg(Mod⨿G
R ) of A, in the sense of [Lur17, Section

4.7.1]. The algebra Ã is a refinement of the skew group algebra AG, which is defined as the
image of Ã under the monoidal functor ψ =

∐
: Mod⨿G

R → ModR. It remains to unravel its
definition to describe the skew group algebra more explicitly.

Given g ∈ G, the restriction to the corresponding component ModR ⊂ Mod⨿G
R of Ã

is given by A. Inspecting the definition, one sees that this amounts to the fact that A is
preserved by the action of g. We write this decomposition as Ã =

∐
g∈G Ãg. Note that we

thus have AG ≃
∐
g∈GA.

We turn to the algebra structure of Ã (describing it on the level of homotopy groups). To
make the notation for this more transparent, we denote the Mod⨿G

R -action by ⊗G. Firstly,
we consider Ã as equipped with the map m : Ã ⊗G A → A in RModA, that is simply the
multiplication map of A on every component A ⊗ A ≃ Ãg ⊗G A. The crucial point of the
construction of Ã in [Lur17, Section 4.7.1] is that the multiplication map m̃ : Ã ⊗G Ã → Ã
in Mod⨿G

R is uniquely determined by the property that the following diagram commutes4:

Ã⊗G Ã⊗G A Ã⊗G A

Ã⊗G A A

m̃⊗GA

Ã⊗Gm

m

m

We write elements of the homotopy groups of Ã as pairs (g, a) with g ∈ G and a ∈ A. We
next argue that the morphism

Ã⊗G m : Ãg ⊗G Ã⊗G A → Ãg ⊗G A

is given on elements by

(g, a) ⊗ (h, b) ⊗ c 7→ (g, a) ⊗ ((g.b) · c) .

The above identity follows from the following three observations:
• Every element (h, b) ∈ Ã determines an inclusion A ↪→ Ã⊗GA, mapping c to (h, b)⊗ c,

in RModA.
4This follows from the fact that m : Ã ⊗G A → A is a terminal object in the monoidal ∞-category Mod⨿G

R [A]
described in [Lur17, Section 4.7.1].
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• For every (h, b) ∈ Ã, the following diagram commutes:

A

Ã⊗G A A

c 7→(h,b)⊗c b·(-)

m

• For every b ∈ A the tensor product Rg ⊗G (-) with the object Rg = R lying in the
g-component of Mod⨿G

R maps the endomorphism A
b·(-)−−−→ A to the endomorphism

A
g.b·(-)−−−−→ A, where g. refers to the G-action on A.

With the above, it is now straightforward to see that m̃ is given by

m̃ : Ã⊗ Ã → Ã, (g, a) ⊗ (h, b) 7→ (gh, a · (g.b)) ,

matching the desired formula of the multiplication of the skew group algebra.
In case that A is a discrete algebra object of Modk for a field k, the skew group algebra

AG is thus isomorphic to the classical skew group algebra. If A is a dg-algebra with a strict
G-action, one can deduce from Theorem 1.2 and Proposition 3.5 that the dg-categorical skew
group algebra A ∗G is quasi-isomorphic to AG.

Finally, we show that the module ∞-category of AG describes the group quotient.

Proof of Theorem 1.2. Let Ã ∈ Alg(Mod⨿G
R ) be the image of A under the functor ξAlg. We

have equivalences

colimBG RModA ≃ ψ!(RModA) ≃ ψ!(RModÃ(Mod⨿G
R )) ≃ RModψ(Ã) = RModAG ,

where the first equivalence follows from Lemma 2.10, the second from the commutativity of
the left square in Proposition 5.2, and the third (essentially) from [Lur17, Thm. 4.8.4.6].

Remark 5.5. Contrary to the results of the previous sections, the construction of the skew
group algebra and the proof of Theorem 1.2 do not use that every element of G has an
inverse. Theorem 1.2 thus immediately generalizes to the case that G is a monoid in sets.
We also note that a small amount of additional work allows a generalization to the setting
where G is a monoid in spaces.

Example 5.6. The skew group algebra typically does not describe the colimit over BG in
the ∞-category of algebra objects in ModR. Sometimes, they are however Morita equivalent.

Consider for instance the case that k is a field, A = k⊕2 is the product algebra and
G = Z/2Z, acting on A by permuting the two factors. The colimit colimBZ/2ZA ∈ Alg(Modk)
is then equivalent to k if char(k) ̸= 2 and equivalent to 0 if char(k) = 2. The skew group
algebra AG is isomorphic to the matrix algebra of 2 × 2-matrices, which is Morita equivalent
to k.
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